HOME





Paranormal Subgroup
In mathematics, in the field of group theory, a paranormal subgroup is a subgroup such that the subgroup generated by it and any conjugate of it, is also generated by it and a conjugate of it ''within'' that subgroup. In symbols, H is paranormal in G if given any g in G, the subgroup K generated by H and H^g is also equal to H^K. Equivalently, a subgroup is paranormal if its weak closure and normal closure coincide in all intermediate subgroups. Here are some facts relating paranormality to other subgroup properties: * Every pronormal subgroup, and hence, every normal subgroup In abstract algebra, a normal subgroup (also known as an invariant subgroup or self-conjugate subgroup) is a subgroup that is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup N of the group ... and every abnormal subgroup, is paranormal. * Every paranormal subgroup is a polynormal subgroup. * In finite solvable groups, every polynormal subgroup ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field (mathematics), fields, and vector spaces, can all be seen as groups endowed with additional operation (mathematics), operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right. Various physical systems, such as crystals and the hydrogen atom, and Standard Model, three of the four known fundamental forces in the universe, may be modelled by symmetry groups. Thus group theory and the closely related representation theory have many important applications in physics, chemistry, and materials science. Group theory is also cen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Subgroup
In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group (mathematics), group under a binary operation ∗, a subset of is called a subgroup of if also forms a group under the operation ∗. More precisely, is a subgroup of if the Restriction (mathematics), restriction of ∗ to is a group operation on . This is often denoted , read as " is a subgroup of ". The trivial subgroup of any group is the subgroup consisting of just the identity element. A proper subgroup of a group is a subgroup which is a subset, proper subset of (that is, ). This is often represented notationally by , read as " is a proper subgroup of ". Some authors also exclude the trivial group from being proper (that is, ). If is a subgroup of , then is sometimes called an overgroup of . The same definitions apply more generally when is an arbitrary se ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Generating Set Of A Group
In abstract algebra, a generating set of a group is a subset of the group set such that every element of the group (mathematics), group can be expressed as a combination (under the group operation) of finitely many elements of the subset and their Inverse element, inverses. In other words, if S is a subset of a group G, then \langle S\rangle, the ''subgroup generated by S'', is the smallest subgroup of G containing every element of S, which is equal to the intersection over all subgroups containing the elements of S; equivalently, \langle S\rangle is the subgroup of all elements of G that can be expressed as the finite product of elements in S and their inverses. (Note that inverses are only needed if the group is infinite; in a finite group, the inverse of an element can be expressed as a power of that element.) If G=\langle S\rangle, then we say that S ''generates'' G, and the elements in S are called ''generators'' or ''group generators''. If S is the empty set, then \langle S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conjugacy Class
In mathematics, especially group theory, two elements a and b of a group are conjugate if there is an element g in the group such that b = gag^. This is an equivalence relation whose equivalence classes are called conjugacy classes. In other words, each conjugacy class is closed under b = gag^ for all elements g in the group. Members of the same conjugacy class cannot be distinguished by using only the group structure, and therefore share many properties. The study of conjugacy classes of non-abelian groups is fundamental for the study of their structure. For an abelian group, each conjugacy class is a set containing one element ( singleton set). Functions that are constant for members of the same conjugacy class are called class functions. Definition Let G be a group. Two elements a, b \in G are conjugate if there exists an element g \in G such that gag^ = b, in which case b is called of a and a is called a conjugate of b. In the case of the general linear group \op ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pronormal Subgroup
In mathematics, especially in the field of group theory, a pronormal subgroup is a subgroup that is embedded in a nice way. Pronormality is a simultaneous generalization of both normal subgroups and abnormal subgroups such as Sylow subgroups, . A subgroup is pronormal if each of its conjugacy class, conjugates is conjugate to it already in the subgroup generating set of a group, generated by it and its conjugate. That is, ''H'' is pronormal in ''G'' if for every ''g'' in ''G'', there is some ''k'' in the subgroup generated by ''H'' and ''H''''g'' such that ''H''''k'' = ''H''''g''. (Here ''H''''g'' denotes the conjugate subgroup ''gHg''''-1''.) Here are some relations with other subgroup properties: *Every normal subgroup is pronormal. *Every Sylow subgroup is pronormal. *Every pronormal subnormal subgroup is normal. *Every abnormal subgroup is pronormal. *Every pronormal subgroup is weakly pronormal subgroup, weakly pronormal, that is, it has the Frattini property. *Every pronorm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Normal Subgroup
In abstract algebra, a normal subgroup (also known as an invariant subgroup or self-conjugate subgroup) is a subgroup that is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup N of the group G is normal in G if and only if gng^ \in N for all g \in G and n \in N. The usual notation for this relation is N \triangleleft G. Normal subgroups are important because they (and only they) can be used to construct quotient groups of the given group. Furthermore, the normal subgroups of G are precisely the kernels of group homomorphisms with domain G, which means that they can be used to internally classify those homomorphisms. Évariste Galois was the first to realize the importance of the existence of normal subgroups. Definitions A subgroup N of a group G is called a normal subgroup of G if it is invariant under conjugation; that is, the conjugation of an element of N by an element of G is always in N. The usual notation fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abnormal Subgroup
In mathematics, specifically group theory, an abnormal subgroup is a subgroup ''H'' of a group ''G'' such that for all ''x'' in ''G'', ''x'' lies in the subgroup generated by ''H'' and ''H''''x'', where ''H''''x'' denotes the conjugate subgroup ''xHx''−1. Here are some facts relating abnormality to other subgroup properties: * Every abnormal subgroup is a self-normalizing subgroup, as well as a contranormal subgroup. * The only normal subgroup that is also abnormal is the whole group. * Every abnormal subgroup is a weakly abnormal subgroup, and every weakly abnormal subgroup is a self-normalizing subgroup. * Every abnormal subgroup is a pronormal subgroup In mathematics, especially in the field of group theory, a pronormal subgroup is a subgroup that is embedded in a nice way. Pronormality is a simultaneous generalization of both normal subgroups and abnormal subgroups such as Sylow subgroups, . A ..., and hence a weakly pronormal subgroup, a paranormal subgroup, and a po ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Polynormal Subgroup
In mathematics, in the field of group theory, a subgroup of a group is said to be polynormal if its closure under conjugation by any element of the group can also be achieved via closure by conjugation by some element in the subgroup generated. In symbols, a subgroup H of a group G is called polynormal if for any g \in G the subgroup K = H^ is the same as H^. Here are the relationships with other subgroup properties: * Every weakly pronormal subgroup In mathematics, especially in the field of group theory, a pronormal subgroup is a subgroup that is embedded in a nice way. Pronormality is a simultaneous generalization of both normal subgroups and abnormal subgroups such as Sylow subgroups, . A ... is polynormal. * Every paranormal subgroup is polynormal. References Subgroup properties {{group-theory-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]