HOME





Pairwise Comparison
Pairwise generally means "occurring in pairs" or "two at a time." Pairwise may also refer to: * Pairwise disjoint In set theory in mathematics and Logic#Formal logic, formal logic, two Set (mathematics), sets are said to be disjoint sets if they have no element (mathematics), element in common. Equivalently, two disjoint sets are sets whose intersection (se ... * Pairwise independence of random variables * Pairwise comparison, the process of comparing two entities to determine which is preferred * All-pairs testing, also known as pairwise testing, a software testing method. {{mathdab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pairwise Disjoint
In set theory in mathematics and Logic#Formal logic, formal logic, two Set (mathematics), sets are said to be disjoint sets if they have no element (mathematics), element in common. Equivalently, two disjoint sets are sets whose intersection (set theory), intersection is the empty set.. For example, and are ''disjoint sets,'' while and are not disjoint. A collection of two or more sets is called disjoint if any two distinct sets of the collection are disjoint. Generalizations This definition of disjoint sets can be extended to family of sets, families of sets and to indexed family, indexed families of sets. By definition, a collection of sets is called a ''family of sets'' (such as the power set, for example). In some sources this is a set of sets, while other sources allow it to be a multiset of sets, with some sets repeated. An \left(A_i\right)_, is by definition a set-valued Function (mathematics), function (that is, it is a function that assigns a set A_i to every ele ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pairwise Independence
In probability theory, a pairwise independent collection of random variables is a set of random variables any two of which are statistical independence, independent. Any collection of Mutual independence, mutually independent random variables is pairwise independent, but some pairwise independent collections are not mutually independent. Pairwise independent random variables with finite variance are uncorrelated. A pair of random variables ''X'' and ''Y'' are independent if and only if the random vector (''X'', ''Y'') with joint distribution, joint cumulative distribution function (CDF) F_(x,y) satisfies :F_(x,y) = F_X(x) F_Y(y), or equivalently, their joint density f_(x,y) satisfies :f_(x,y) = f_X(x) f_Y(y). That is, the joint distribution is equal to the product of the marginal distributions. Unless it is not clear in context, in practice the modifier "mutual" is usually dropped so that independence means mutual independence. A statement such as " ''X'', ''Y'', ''Z'' are in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pairwise Comparison (psychology)
Pairwise comparison generally is any process of comparing entities in pairs to judge which of each entity is preference, preferred, or has a greater amount of some quantitative property, or whether or not the two entities are identical. The method of pairwise comparison is used in the scientific study of preferences, attitudes, voting systems, social choice, public choice, requirements engineering and multiagent AI systems. In psychology literature, it is often referred to as paired comparison. Prominent psychometrician L. L. Thurstone first introduced a scientific approach to using pairwise comparisons for measurement in 1927, which he referred to as the law of comparative judgment. Thurstone linked this approach to psychophysical theory developed by Ernst Heinrich Weber and Gustav Fechner. Thurstone demonstrated that the method can be used to order items along a dimension such as preference or importance using an interval-type scale. Mathematician Ernst Zermelo (1929) first de ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]