HOME





Overlapping Interval Topology
In mathematics, the overlapping interval topology is a topology which is used to illustrate various topological principles. Definition Given the closed interval [-1,1] of the real number line, the open sets of the topology are subbase, generated from the half-open intervals (a,1] with a 0. The topology therefore consists of intervals of the form [-1,b), (a,b), and (a,1] with a < 0 < b, together with [-1,1] itself and the empty set.


Properties

Any two Distinct (mathematics), distinct points in [-1,1] are topologically distinguishable under the overlapping interval topology as one can always find an open set containing one but not the other point. However, every non-empty open set contains the point 0 which can therefore not be separated set, separated from any other point in [-1,1], making [-1,1] with the overlapping interval topology an example of a T0 space, T0 space that is not a T1 space, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

T0 Space
T, or t, is the twentieth letter of the Latin alphabet, used in the modern English alphabet, the alphabets of other western European languages and others worldwide. Its name in English is ''tee'' (pronounced ), plural ''tees''. It is derived from the Semitic Taw 𐤕 of the Phoenician and Paleo-Hebrew script (Aramaic and Hebrew Taw ת/𐡕/, Syriac Taw ܬ, and Arabic ت Tāʼ) via the Greek letter τ (tau). In English, it is most commonly used to represent the voiceless alveolar plosive, a sound it also denotes in the International Phonetic Alphabet. It is the most commonly used consonant and the second-most commonly used letter in English-language texts. History '' Taw'' was the last letter of the Western Semitic and Hebrew alphabets. The sound value of Semitic ''Taw'', the Greek alphabet Tαυ (''Tau''), Old Italic and Latin T has remained fairly constant, representing in each of these, and it has also kept its original basic shape in most of these alphabets. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second-largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Counterexamples In Topology
''Counterexamples in Topology'' (1970, 2nd ed. 1978) is a book on mathematics by topologists Lynn Steen and J. Arthur Seebach, Jr. In the process of working on problems like the metrization problem, topologists (including Steen and Seebach) have defined a wide variety of topological properties. It is often useful in the study and understanding of abstracts such as topological spaces to determine that one property does not follow from another. One of the easiest ways of doing this is to find a counterexample which exhibits one property but not the other. In ''Counterexamples in Topology'', Steen and Seebach, together with five students in an undergraduate research project at St. Olaf College, Minnesota in the summer of 1967, canvassed the field of topology for such counterexamples and compiled them in an attempt to simplify the literature. For instance, an example of a first-countable space which is not second-countable is counterexample #3, the discrete topology on an u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Particular Point Topology
In mathematics, the particular point topology (or included point topology) is a topology where a set is open if it contains a particular point of the topological space. Formally, let ''X'' be any non-empty set and ''p'' ∈ ''X''. The collection :T = \ \cup \ of subsets of ''X'' is the particular point topology on ''X''. There are a variety of cases that are individually named: * If ''X'' has two points, the particular point topology on ''X'' is the Sierpiński space. * If ''X'' is finite (with at least 3 points), the topology on ''X'' is called the finite particular point topology. * If ''X'' is countably infinite, the topology on ''X'' is called the countable particular point topology. * If ''X'' is uncountable, the topology on ''X'' is called the uncountable particular point topology. A generalization of the particular point topology is the closed extension topology. In the case when ''X'' \ has the discrete topology, the closed extension topology is the same as the pa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




List Of Topologies
The following is a list of named topologies or topological spaces, many of which are counterexamples in topology and related branches of mathematics. This is not a list of properties that a topology or topological space might possess; for that, see List of general topology topics and Topological property. Discrete and indiscrete * Discrete topology − All subsets are open. * Indiscrete topology, chaotic topology, or Trivial topology − Only the empty set and its complement are open. Cardinality and ordinals * Cocountable topology ** Given a topological space (X, \tau), the '' '' on X is the topology having as a subbasis the union of and the family of all subsets of X whose complements in X are countable. * Cofinite topology * Double-pointed cofinite topology * Ordinal number topology * Pseudo-arc * Ran space * Tychonoff plank Finite spaces * Discrete two-point space − The simplest example of a totally disconnected discrete space. * Finite topological space * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Second Countable
In topology, a second-countable space, also called a completely separable space, is a topological space whose topology has a countable base. More explicitly, a topological space T is second-countable if there exists some countable collection \mathcal = \_^ of open subsets of T such that any open subset of T can be written as a union of elements of some subfamily of \mathcal. A second-countable space is said to satisfy the second axiom of countability. Like other countability axioms, the property of being second-countable restricts the number of open subsets that a space can have. Many "well-behaved" spaces in mathematics are second-countable. For example, Euclidean space (R''n'') with its usual topology is second-countable. Although the usual base of open balls is uncountable, one can restrict this to the collection of all open balls with rational radii and whose centers have rational coordinates. This restricted collection is countable and still forms a basis. Properties Secon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


T1 Space
In topology and related branches of mathematics, a T1 space is a topological space in which, for every pair of distinct points, each has a neighborhood not containing the other point. An R0 space is one in which this holds for every pair of topologically distinguishable points. The properties T1 and R0 are examples of separation axioms. Definitions Let ''X'' be a topological space and let ''x'' and ''y'' be points in ''X''. We say that ''x'' and ''y'' are if each lies in a neighbourhood that does not contain the other point. * ''X'' is called a T1 space if any two distinct points in ''X'' are separated. * ''X'' is called an R0 space if any two topologically distinguishable points in ''X'' are separated. A T1 space is also called an accessible space or a space with Fréchet topology and an R0 space is also called a symmetric space. (The term also has an entirely different meaning in functional analysis. For this reason, the term ''T1 space'' is preferred. There is also a n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Separated Set
In topology and related branches of mathematics, separated sets are pairs of subsets of a given topological space that are related to each other in a certain way: roughly speaking, neither overlapping nor touching. The notion of when two sets are separated or not is important both to the notion of connected spaces (and their connected components) as well as to the separation axioms for topological spaces. Separated sets should not be confused with separated spaces (defined below), which are somewhat related but different. Separable spaces are again a completely different topological concept. Definitions There are various ways in which two subsets A and B of a topological space X can be considered to be separated. A most basic way in which two sets can be separated is if they are disjoint, that is, if their intersection is the empty set. This property has nothing to do with topology as such, but only set theory. Each of the following properties is stricter than disjointness ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Topology
Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such as Stretch factor, stretching, Torsion (mechanics), twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a Set (mathematics), set endowed with a structure, called a ''Topology (structure), topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of List of continuity-related mathematical topics, continuity. Euclidean spaces, and, more generally, metric spaces are examples of topological spaces, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and Homotopy, homotopies. A property that is invariant under such deformations is a to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Topologically Distinguishable
In topology, two points of a topological space ''X'' are topologically indistinguishable if they have exactly the same neighborhoods. That is, if ''x'' and ''y'' are points in ''X'', and ''Nx'' is the set of all neighborhoods that contain ''x'', and ''Ny'' is the set of all neighborhoods that contain ''y'', then ''x'' and ''y'' are "topologically indistinguishable" if and only if ''Nx'' = ''Ny''. (See Hausdorff's axiomatic neighborhood systems.) Intuitively, two points are topologically indistinguishable if the topology of ''X'' is unable to discern between the points. Two points of ''X'' are topologically distinguishable if they are not topologically indistinguishable. This means there is an open set containing precisely one of the two points (equivalently, there is a closed set containing precisely one of the two points). This open set can then be used to distinguish between the two points. A T0 space is a topological space in which every pair of distinct poin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Distinct (mathematics)
In mathematics, an inequation is a statement that either an ''inequality'' (relations "greater than" and "less than", ) or a relation "not equal to" (≠) holds between two values. It is usually written in the form of a pair of expressions denoting the values in question, with a relational sign between the two sides, indicating the specific inequality relation. Some examples of inequations are: * a 1 * x \neq 0 In some cases, the term "inequation" has a more restricted definition, reserved only for statements whose inequality relation is "not equal to" (or "distinct"). Chains of inequations A shorthand notation is used for the conjunction of several inequations involving common expressions, by chaining them together. For example, the chain :0 \leq a < b \leq 1 is shorthand for :0 \leq a ~ ~ \mathrm ~ ~ a < b ~ ~ \mathrm ~ ~ b \leq 1 which also implies that 0 < b and a < 1. In rare cases, chains without such implications about ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]