Overhead Projector
An overhead projector (often abbreviated to OHP), like a Movie projector, film or slide projector, uses light to Projector, project an enlarged image on a Projection screen, screen, allowing the view of a small document or picture to be shared with a large audience. In the overhead projector, the source of the image is a page-sized sheet of Transparency and translucency, transparent plastic film (also known as "viewfoils", "foils" or "transparencies") with the image to be projected either printed or hand-written/drawn. These transparent sheets are placed on the glass platen of the projector, which has a light source below it and a projecting mirror and lens assembly above it (hence, "overhead"). They were widely used in education and business before the advent of video projectors. Optical system An overhead projector works on the same principle as a slide projector, in which a focusing lens projects light from an illuminated slide onto a projection screen where a real image is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Opaque Projector
The opaque projector, or episcope is a device which displays opaque materials by shining a bright lamp onto the object from above. The episcope must be distinguished from the diascope, which is a projector used for projecting images of transparent objects (such as films), and from the epidiascope, which is capable of projecting images of both opaque and transparent objects. A system of mirrors, prisms and/or imaging lenses is used to focus an image of the material onto a viewing screen. Because they must project the reflected light, opaque projectors require brighter bulbs and larger lenses than overhead projectors. Care must be taken that the materials are not damaged by the heat generated by the light source. Opaque projectors are not as common as the overhead projector. Opaque projectors are typically used to project images of book pages, drawings, mineral specimens, leaves, etc. They have been produced and marketed as artists' enlargement tools to allow images to be transfer ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Applied Physics
Applied physics is the application of physics to solve scientific or engineering problems. It is usually considered a bridge or a connection between physics and engineering. "Applied" is distinguished from "pure" by a subtle combination of factors, such as the motivation and attitude of researchers and the nature of the relationship to the technology or science that may be affected by the work. Applied physics is rooted in the fundamental truths and basic concepts of the physical sciences but is concerned with the utilization of scientific principles in practical devices and systems and with the application of physics in other areas of science and high technology. Examples of research and development areas *Accelerator physics *Acoustics *Atmospheric physics *Biophysics * Brain–computer interfacing *Chemistry *Chemical physics *Differentiable programming **Artificial intelligence **Scientific computing *Engineering physics **Chemical engineering **Electrical engineering *** ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Luminous Efficacy
Luminous efficacy is a measure of how well a light source produces visible light. It is the ratio of luminous flux to power, measured in lumens per watt in the International System of Units (SI). Depending on context, the power can be either the radiant flux of the source's output, or it can be the total power (electric power, chemical energy, or others) consumed by the source. Which sense of the term is intended must usually be inferred from the context, and is sometimes unclear. The former sense is sometimes called luminous efficacy of radiation,International Electrotechnical Commission (IEC): ''International Electrotechnical Vocabulary''ref. 845-21-090, Luminous efficacy of radiation (for a specified photometric condition)/ref> and the latter luminous efficacy of a light sourceInternational Electrotechnical Commission (IEC): ''International Electrotechnical Vocabulary''ref. 845-21-089, Luminous efficacy (of a light source)/ref> or overall luminous efficacy. Not all wavelength ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ultra-high-performance Lamp
An ultra-high-performance lamp, often known by the Philips trademark UHP, is a high-pressure mercury arc lamp. These were originally known as ultra-high-pressure lamps, because the internal pressure can rise to as much as 200 atmospheres when the lamp reaches its operating temperature. It was developed by Philips in 1995 for use in commercial projection systems, home theatre projectors, MD-PTVs and video walls. Unlike other common mercury vapor lamps used in projection systems, it is not a metal halide lamp, as it uses only mercury. Philips claims a lifetime of over 10,000 hours for the lamps. These lamps are highly efficient compared to other projection lampsa single 132 watt UHP lamp is used by DLP manufacturers such as Samsung and RCA to power their DLP rear-projection TV lines. It is used in many LCD and DLP video projectors. Known manufacturers of high-pressure discharge lamps (UHP or similar) * EYE/Iwasaki (HSCR) (AC only), Japan based. * Osram/Sylvania (P-VIP / NeoLu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
LCD Projector
An LCD projector is a type of video projector for displaying video, images or computer data on a screen or other flat surface. It is a modern equivalent of the slide projector or overhead projector. To display images, LCD (liquid crystal display, liquid-crystal display) projectors typically send light from a metal-halide lamp through a Prism (optics), prism or series of dichroic filters that separates light to three Polycrystalline silicon, polysilicon panelsone each for the red, green and blue components of the video signal. As polarized light passes through the panels (combination of polarizer, polysilicon LCD panel and analyzer), individual pixels can be opened (made transparent controlled by electricity) to allow light to pass or closed (made opaque controlled by electricity) to block the light. The combination of open and closed pixels can produce a wide range of colors and shades in the projected image. Metal-halide lamps are used because they output an ideal color temperatu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Magnification
Magnification is the process of enlarging the apparent size, not physical size, of something. This enlargement is quantified by a size ratio called optical magnification. When this number is less than one, it refers to a reduction in size, sometimes called ''de-magnification''. Typically, magnification is related to scaling up visuals or images to be able to see more detail, increasing resolution, using microscope, printing techniques, or digital processing. In all cases, the magnification of the image does not change the perspective of the image. Examples of magnification Some optical instruments provide visual aid by magnifying small or distant subjects. * A magnifying glass, which uses a positive (convex) lens to make things look bigger by allowing the user to hold them closer to their eye. * A telescope, which uses its large objective lens or primary mirror to create an image of a distant object and then allows the user to examine the image closely with a smaller ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Focal Length
The focal length of an Optics, optical system is a measure of how strongly the system converges or diverges light; it is the Multiplicative inverse, inverse of the system's optical power. A positive focal length indicates that a system Convergence (optics), converges light, while a negative focal length indicates that the system Divergence (optics), diverges light. A system with a shorter focal length bends the Ray (optics), rays more sharply, bringing them to a focus in a shorter distance or diverging them more quickly. For the special case of a thin lens in air, a positive focal length is the distance over which initially Collimated beam, collimated (parallel) rays are brought to a Focus (optics), focus, or alternatively a negative focal length indicates how far in front of the lens a point source must be located to form a collimated beam. For more general optical systems, the focal length has no intuitive meaning; it is simply the inverse of the system's optical power. In mos ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Thin Lens
In optics, a thin lens is a lens (optics), lens with a thickness (distance along the optical axis between the two surfaces of the lens) that is negligible compared to the radius of curvature (optics), radii of curvature of the lens surfaces. Lenses whose thickness is not negligible are sometimes called ''thick lenses''. The thin lens approximation ignores optical effects due to the thickness of lenses and simplifies Ray tracing (physics), ray tracing calculations. It is often combined with the paraxial approximation in techniques such as ray transfer matrix analysis. Focal length The focal length, ''f'', of a lens in air is given by the lensmaker's equation: :\frac = (n-1) \left[ \frac - \frac + \frac \right], where ''n'' is the index of refraction of the lens material, ''R''1 and ''R''2 are the Radius of curvature (optics), radii of curvature of the two surfaces, and ''d'' is the thickness of the lens. Here ''R''1 is taken to be positive if the first surface is convex, and nega ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Forced Convection
Forced convection is a mechanism, or type of transport, in which fluid motion is generated by an external source (like a pump, fan, suction device, etc.). Alongside natural convection, thermal radiation, and thermal conduction it is one of the methods of heat transfer and allows significant amounts of heat energy to be transported very efficiently. Applications This mechanism is found very commonly in everyday life, including central heating and air conditioning and in many other machines. Forced convection is often encountered by engineers designing or analyzing heat exchangers, pipe flow, and flow over a plate at a different temperature than the stream (the case of a shuttle wing during re-entry, for example). Mixed convection In any forced convection situation, some amount of natural convection is always present whenever there are gravitational forces present (i.e., unless the system is in an inertial frame or free-fall). When the natural convection is not negligible, such flow ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fresnel Lens
A Fresnel lens ( ; ; or ) is a type of composite compact lens (optics), lens which reduces the amount of material required compared to a conventional lens by dividing the lens into a set of concentric annular sections. The simpler Dioptrics, dioptric (purely refraction, refractive) form of the lens was first proposed by Georges-Louis Leclerc, Comte de Buffon, and independently reinvented by the French physicist Augustin-Jean Fresnel (1788–1827) for use in lighthouses. The Catadioptric system, catadioptric (combining refraction and reflection) form of the lens, entirely invented by Fresnel, has outer Prism (optics), prismatic elements that use total internal reflection as well as refraction to capture more oblique light from the light source and add it to the beam, making it visible at greater distances. The design allows the construction of lenses of large aperture and short focal length without the mass and volume of material that would be required by a lens of conventional ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |