Ostrowski Numeration
In mathematics, Ostrowski numeration, named after Alexander Ostrowski, is either of two related numeration systems based on continued fractions: a non-standard positional numeral system for integers and a non-integer representation of real numbers. Fix a positive irrational number ''α'' with continued fraction expansion 'a''0; ''a''1, ''a''2, ... Let (''q''''n'') be the sequence of denominators of the convergents ''p''''n''/''q''''n'' to α: so ''q''''n'' = ''a''''n''''q''''n''−1 + ''q''''n''−2. Let ''α''''n'' denote ''T''''n''(''α'') where ''T'' is the Gauss map ''T''(''x'') = , and write ''β''''n'' = (−1)''n''+1 ''α''0 ''α''1 ... ''α''''n'': we have ''β''''n'' = ''a''''n''''β''''n''−1 + ''β''''n''−2. Real number representations Every positive real ''x'' can be written as : x = \sum_^\infty b_n \beta_n \ where the integer coefficients 0 ≤ ''b''''n'' ≤ ''a''''n'' and if ''b''''n'' = ''a''''n'' then ''b''''n''−1 = 0. Integer ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Alexander Ostrowski
Alexander Markowich Ostrowski ( uk, Олександр Маркович Островський; russian: Алекса́ндр Ма́ркович Остро́вский; 25 September 1893, in Kiev, Russian Empire – 20 November 1986, in Montagnola, Lugano, Switzerland) was a mathematician. His father Mark having been a merchant, Alexander Ostrowski attended the Kiev College of Commerce, not a high school, and thus had an insufficient qualification to be admitted to university. However, his talent did not remain undetected: Ostrowski's mentor, Dmitry Grave, wrote to Landau and Hensel for help. Subsequently, Ostrowski began to study mathematics at Marburg University under Hensel's supervision in 1912. During World War I he was interned, but thanks to the intervention of Hensel, the restrictions on his movements were eased somewhat, and he was allowed to use the university library. After the war ended Ostrowski moved to Göttingen where he wrote his doctoral dissertation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Continued Fraction
In mathematics, a continued fraction is an expression obtained through an iterative process of representing a number as the sum of its integer part and the reciprocal of another number, then writing this other number as the sum of its integer part and another reciprocal, and so on. In a finite continued fraction (or terminated continued fraction), the iteration/recursion is terminated after finitely many steps by using an integer in lieu of another continued fraction. In contrast, an infinite continued fraction is an infinite expression. In either case, all integers in the sequence, other than the first, must be positive. The integers a_i are called the coefficients or terms of the continued fraction. It is generally assumed that the numerator of all of the fractions is 1. If arbitrary values and/or functions are used in place of one or more of the numerators or the integers in the denominators, the resulting expression is a generalized continued fraction. When it is ne ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Non-standard Positional Numeral System
Non-standard positional numeral systems here designates numeral systems that may loosely be described as positional systems, but that do not entirely comply with the following description of standard positional systems: :In a standard positional numeral system, the base ''b'' is a positive integer, and ''b'' different numerals are used to represent all non-negative integers. The standard set of numerals contains the ''b'' values 0, 1, 2, etc., up to ''b'' − 1, but the value is weighted according to the position of the digit in a number. The value of a digit string like ''pqrs'' in base ''b'' is given by the polynomial form ::p\times b^3+q\times b^2+r\times b+s. :The numbers written in superscript represent the powers of the base used. :For instance, in hexadecimal (''b''=16), using the numerals A for 10, B for 11 etc., the digit string 7A3F means ::7\times16^3+10\times16^2+3\times16+15, :which written in our normal decimal notation is 31295. :Upon introducing a ra ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Non-integer Representation
A non-integer representation uses non-integer numbers as the radix, or base, of a positional numeral system. For a non-integer radix ''β'' > 1, the value of :x = d_n \dots d_2d_1d_0.d_d_\dots d_ is :\begin x &= \beta^nd_n + \cdots + \beta^2d_2 + \beta d_1 + d_0 \\ &\qquad + \beta^d_ + \beta^d_ + \cdots + \beta^d_. \end The numbers ''d''''i'' are non-negative integers less than ''β''. This is also known as a ''β''-expansion, a notion introduced by and first studied in detail by . Every real number has at least one (possibly infinite) ''β''-expansion. The set of all ''β''-expansions that have a finite representation is a subset of the ring Z 'β'', ''β''−1 There are applications of ''β''-expansions in coding theory and models of quasicrystals (; ). Construction ''β''-expansions are a generalization of decimal expansions. While infinite decimal expansions are not unique (for example, 1.000... = 0.999...), all finite decimal expansions are unique. However, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Real Number
In mathematics, a real number is a number that can be used to measurement, measure a ''continuous'' one-dimensional quantity such as a distance, time, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limit (mathematics), limits, continuous function, continuity and derivatives. The set of real numbers is mathematical notation, denoted or \mathbb and is sometimes called "the reals". The adjective ''real'' in this context was introduced in the 17th century by René Descartes to distinguish real numbers, associated with physical reality, from imaginary numbers (such as the square roots of ), which seemed like a theoretical contrivance unrelated to physical reality. The real numbers subset, include t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Irrational Number
In mathematics, the irrational numbers (from in- prefix assimilated to ir- (negative prefix, privative) + rational) are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two integers. When the ratio of lengths of two line segments is an irrational number, the line segments are also described as being '' incommensurable'', meaning that they share no "measure" in common, that is, there is no length ("the measure"), no matter how short, that could be used to express the lengths of both of the two given segments as integer multiples of itself. Among irrational numbers are the ratio of a circle's circumference to its diameter, Euler's number ''e'', the golden ratio ''φ'', and the square root of two. In fact, all square roots of natural numbers, other than of perfect squares, are irrational. Like all real numbers, irrational numbers can be expressed in positional notation, notably as a decimal number. In the ca ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Golden Ratio
In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. Expressed algebraically, for quantities a and b with a > b > 0, where the Greek letter phi ( or \phi) denotes the golden ratio. The constant \varphi satisfies the quadratic equation \varphi^2 = \varphi + 1 and is an irrational number with a value of The golden ratio was called the extreme and mean ratio by Euclid, and the divine proportion by Luca Pacioli, and also goes by several other names. Mathematicians have studied the golden ratio's properties since antiquity. It is the ratio of a regular pentagon's diagonal to its side and thus appears in the construction of the dodecahedron and icosahedron. A golden rectangle—that is, a rectangle with an aspect ratio of \varphi—may be cut into a square and a smaller rectangle with the same aspect ratio. The golden ratio has been used to analyze the proportions of natural o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fibonacci Numbers
In mathematics, the Fibonacci numbers, commonly denoted , form a sequence, the Fibonacci sequence, in which each number is the sum of the two preceding ones. The sequence commonly starts from 0 and 1, although some authors start the sequence from 1 and 1 or sometimes (as did Fibonacci) from 1 and 2. Starting from 0 and 1, the first few values in the sequence are: :0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144. The Fibonacci numbers were first described in Indian mathematics, as early as 200 BC in work by Pingala on enumerating possible patterns of Sanskrit poetry formed from syllables of two lengths. They are named after the Italian mathematician Leonardo of Pisa, later known as Fibonacci, who introduced the sequence to Western European mathematics in his 1202 book '' Liber Abaci''. Fibonacci numbers appear unexpectedly often in mathematics, so much so that there is an entire journal dedicated to their study, the '' Fibonacci Quarterly''. Applications of Fibonacci numbers includ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Zeckendorf's Theorem
In mathematics, Zeckendorf's theorem, named after Belgian amateur mathematician Edouard Zeckendorf, is a theorem about the representation of integers as sums of Fibonacci numbers. Zeckendorf's theorem states that every positive integer can be represented uniquely as the sum of ''one or more'' distinct Fibonacci numbers in such a way that the sum does not include any two consecutive Fibonacci numbers. More precisely, if is any positive integer, there exist positive integers , with , such that :N = \sum_^k F_, where is the th Fibonacci number. Such a sum is called the Zeckendorf representation of . The Fibonacci coding of can be derived from its Zeckendorf representation. For example, the Zeckendorf representation of 64 is :. There are other ways of representing 64 as the sum of Fibonacci numbers : : : : but these are not Zeckendorf representations because 34 and 21 are consecutive Fibonacci numbers, as are 5 and 3. For any given positive integer, its Zeckendorf ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fibonacci Representation
In mathematics and computing, Fibonacci coding is a universal code which encodes positive integers into binary code words. It is one example of representations of integers based on Fibonacci numbers. Each code word ends with "11" and contains no other instances of "11" before the end. The Fibonacci code is closely related to the ''Zeckendorf representation'', a positional numeral system that uses Zeckendorf's theorem and has the property that no number has a representation with consecutive 1s. The Fibonacci code word for a particular integer is exactly the integer's Zeckendorf representation with the order of its digits reversed and an additional "1" appended to the end. Definition For a number N\!, if d(0),d(1),\ldots,d(k-1),d(k)\! represent the digits of the code word representing N\! then we have: : N = \sum_^ d(i) F(i+2),\textd(k-1)=d(k)=1.\! where is the th Fibonacci number, and so is the th distinct Fibonacci number starting with 1,2,3,5,8,13,\ldots. The last bit d(k) ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Complete Sequence
In mathematics, a sequence of natural numbers is called a complete sequence if every positive integer can be expressed as a sum of values in the sequence, using each value at most once. For example, the sequence of powers of two (1, 2, 4, 8, ...), the basis of the binary numeral system, is a complete sequence; given any natural number, we can choose the values corresponding to the 1 bits in its binary representation and sum them to obtain that number (e.g. 37 = 1001012 = 1 + 4 + 32). This sequence is minimal, since no value can be removed from it without making some natural numbers impossible to represent. Simple examples of sequences that are not complete include the even numbers, since adding even numbers produces only even numbers—no odd number can be formed. Conditions for completeness Without loss of generality, assume the sequence ''a''''n'' is in non-decreasing order, and define the partial sums of ''a''''n'' as: :s_n=\sum_^n a_m. Then the conditions :a_0 = 1 \, :s_ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |