Osserman Manifold
   HOME





Osserman Manifold
In mathematics, particularly in differential geometry, an Osserman manifold is a Riemannian manifold in which the characteristic polynomial of the Jacobi operator of unit tangent vectors is a constant on the unit tangent bundle. It is named after American mathematician Robert Osserman. Definition Let M^n be a Riemannian manifold. For a point p \in M^n and a unit vector X \in T_pM^n, the Jacobi operator R_X is defined by R_X = R(X,\cdot)X, where R is the Riemann curvature tensor. A manifold M^n is called pointwise Osserman if, for every p \in M^n, the spectrum of the Jacobi operator does not depend on the choice of the unit vector X. The manifold is called globally Osserman if the spectrum depends neither on X nor on p. All two-point homogeneous spaces are globally Osserman, including Euclidean spaces \mathbb^n, real projective spaces \mathbb^n, spheres \mathbb^n, hyperbolic spaces \mathbb^n, complex projective spaces \mathbb^n, complex hyperbolic spaces \mathbb^n, quaternionic p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperbolic Space
In mathematics, hyperbolic space of dimension ''n'' is the unique simply connected, ''n''-dimensional Riemannian manifold of constant sectional curvature equal to −1. It is homogeneous, and satisfies the stronger property of being a symmetric space. There are many ways to construct it as an open subset of \mathbb R^n with an explicitly written Riemannian metric; such constructions are referred to as models. Hyperbolic 2-space, H2, which was the first instance studied, is also called the hyperbolic plane. It is also sometimes referred to as Lobachevsky space or Bolyai–Lobachevsky space after the names of the author who first published on the topic of hyperbolic geometry. Sometimes the qualificative "real" is added to distinguish it from complex hyperbolic spaces. Hyperbolic space serves as the prototype of a Gromov hyperbolic space, which is a far-reaching notion including differential-geometric as well as more combinatorial spaces via a synthetic approach to negati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Einstein Manifold
In differential geometry and mathematical physics, an Einstein manifold is a Riemannian or pseudo-Riemannian differentiable manifold whose Ricci tensor is proportional to the metric. They are named after Albert Einstein because this condition is equivalent to saying that the metric is a solution of the vacuum Einstein field equations (with cosmological constant), although both the dimension and the signature of the metric can be arbitrary, thus not being restricted to Lorentzian manifolds (including the four-dimensional Lorentzian manifolds usually studied in general relativity). Einstein manifolds in four Euclidean dimensions are studied as gravitational instantons. If M is the underlying n-dimensional manifold, and g is its metric tensor, the Einstein condition means that :\mathrm = kg for some constant k, where \operatorname denotes the Ricci tensor of g. Einstein manifolds with k = 0 are called Ricci-flat manifolds. The Einstein condition and Einstein's equation In loc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Isospectral Geometry
In theoretical mathematics, the conceptual problem of "hearing the shape of a drum" refers to the prospect of inferring information about the shape of a hypothetical idealized drumhead from the sound it makes when struck, i.e. from analysis of overtones. "Can One Hear the Shape of a Drum?" is the title of a 1966 article by Mark Kac in the ''American Mathematical Monthly'' which made the question famous, though this particular phrasing originates with Lipman Bers. Similar questions can be traced back all the way to physicist Arthur Schuster in 1882. For his paper, Kac was given the Lester R. Ford Award in 1967 and the Chauvenet Prize in 1968. The frequencies at which a drumhead can vibrate depend on its shape. The Helmholtz equation calculates the frequencies if the shape is known. These frequencies are the eigenvalues of the Laplacian in the space. A central question is whether the shape can be predicted if the frequencies are known; for example, whether a Reuleaux trian ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Clifford Algebra
In mathematics, a Clifford algebra is an algebra generated by a vector space with a quadratic form, and is a unital associative algebra with the additional structure of a distinguished subspace. As -algebras, they generalize the real numbers, complex numbers, quaternions and several other hypercomplex number systems. The theory of Clifford algebras is intimately connected with the theory of quadratic forms and orthogonal transformations. Clifford algebras have important applications in a variety of fields including geometry, theoretical physics and digital image processing. They are named after the English mathematician William Kingdon Clifford (1845–1879). The most familiar Clifford algebras, the orthogonal Clifford algebras, are also referred to as (''pseudo-'')''Riemannian Clifford algebras'', as distinct from ''symplectic Clifford algebras''. Introduction and basic properties A Clifford algebra is a unital associative algebra that contains and is generated by ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Quarterly Journal Of Mathematics
The ''Quarterly Journal of Mathematics'' is a quarterly peer-reviewed mathematics journal established in 1930 from the merger of '' The Quarterly Journal of Pure and Applied Mathematics'' and the '' Messenger of Mathematics''. According to the ''Journal Citation Reports'', the journal has a 2020 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a type of journal ranking. Journals with higher impact factor values are considered more prestigious or important within their field. The Impact Factor of a journa ... of 0.681. References External links * {{Official website, http://qjmath.oxfordjournals.org/ Mathematics journals Academic journals established in 1930 English-language journals Oxford University Press academic journals Quarterly journals ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Operator (mathematics)
In mathematics, an operator is generally a Map (mathematics), mapping or function (mathematics), function that acts on elements of a space (mathematics), space to produce elements of another space (possibly and sometimes required to be the same space). There is no general definition of an ''operator'', but the term is often used in place of ''function'' when the domain of a function, domain is a set of functions or other structured objects. Also, the domain of an operator is often difficult to characterize explicitly (for example in the case of an integral operator), and may be extended so as to act on related objects (an operator that acts on functions may act also on differential equations whose solutions are functions that satisfy the equation). (see Operator (physics) for other examples) The most basic operators are linear maps, which act on vector spaces. Linear operators refer to linear maps whose domain and range are the same space, for example from \mathbb^n to \mathbb^n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Orthogonal
In mathematics, orthogonality (mathematics), orthogonality is the generalization of the geometric notion of ''perpendicularity''. Although many authors use the two terms ''perpendicular'' and ''orthogonal'' interchangeably, the term ''perpendicular'' is more specifically used for lines and planes that intersect to form a right angle, whereas ''orthogonal'' is used in generalizations, such as ''orthogonal vectors'' or ''orthogonal curves''. ''Orthogonality'' is also used with various meanings that are often weakly related or not related at all with the mathematical meanings. Etymology The word comes from the Ancient Greek ('), meaning "upright", and ('), meaning "angle". The Ancient Greek (') and Classical Latin ' originally denoted a rectangle. Later, they came to mean a right triangle. In the 12th century, the post-classical Latin word ''orthogonalis'' came to mean a right angle or something related to a right angle. Mathematics Physics Optics In optics, polarization ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Antisymmetric Relation
In mathematics, a binary relation R on a set X is antisymmetric if there is no pair of ''distinct'' elements of X each of which is related by R to the other. More formally, R is antisymmetric precisely if for all a, b \in X, \text \,aRb\, \text \,a \neq b\, \text \,bRa\, \text, or equivalently, \text \,aRb\, \text \,bRa\, \text \,a = b. The definition of antisymmetry says nothing about whether aRa actually holds or not for any a. An antisymmetric relation R on a set X may be reflexive (that is, aRa for all a \in X), irreflexive (that is, aRa for no a \in X), or neither reflexive nor irreflexive. A relation is asymmetric if and only if it is both antisymmetric and irreflexive. Examples The divisibility relation on the natural numbers is an important example of an antisymmetric relation. In this context, antisymmetry means that the only way each of two numbers can be divisible by the other is if the two are, in fact, the same number; equivalently, if n and m are distinct and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cayley Plane
In mathematics, the Cayley plane (or octonionic projective plane) P2(O) is a projective plane over the octonions.Baez (2002). The Cayley plane was discovered in 1933 by Ruth Moufang, and is named after Arthur Cayley for his 1845 paper describing the octonions. Properties In the Cayley plane, lines and points may be defined in a natural way so that it becomes a 2-dimensional projective space, that is, a projective plane. It is a non-Desarguesian plane, where Desargues' theorem does not hold. More precisely, as of 2005, there are two objects called Cayley planes, namely the real and the complex Cayley plane. The real Cayley plane is the symmetric space F4/Spin(9), where F4 is a compact form of an exceptional Lie group and Spin(9) is the spin group of nine-dimensional Euclidean space (realized in F4). It admits a cell decomposition into three cells, of dimensions 0, 8 and 16.Iliev and Manivel (2005). The complex Cayley plane is a homogeneous space under the complexification o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hyperbolic Quaternion
In abstract algebra, the algebra of hyperbolic quaternions is a nonassociative algebra over the real numbers with elements of the form :q = a + bi + cj + dk, \quad a,b,c,d \in \mathbb \! where the squares of i, j, and k are +1 and distinct elements of multiply with the anti-commutative property. The four-dimensional algebra of hyperbolic quaternions incorporates some of the features of the older and larger algebra of biquaternions. They both contain subalgebras isomorphic to the split-complex number plane. Furthermore, just as the quaternion algebra H can be viewed as a union of complex planes, so the hyperbolic quaternion algebra is a pencil of planes of split-complex numbers sharing the same real line. It was Alexander Macfarlane who promoted this concept in the 1890s as his ''Algebra of Physics'', first through the American Association for the Advancement of Science in 1891, then through his 1894 book of five ''Papers in Space Analysis'', and in a series of lectures at Le ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]