Order-5 5-cell Honeycomb
In the geometry of hyperbolic 4-space, the order-5 5-cell honeycomb is one of five compact regular space-filling tessellations (or honeycombs). With Schläfli symbol , it has five 5-cells around each face. Its dual is the 120-cell honeycomb, . Related honeycombs It is related to the order-5 tesseractic honeycomb, , and order-5 120-cell honeycomb, . It is topologically similar to the finite 5-orthoplex, , and 5-simplex, . It is analogous to the 600-cell, , and icosahedron, . See also * List of regular polytopes References * Coxeter, ''Regular Polytopes ''Regular Polytopes'' is a geometry book on regular polytopes written by Harold Scott MacDonald Coxeter. It was originally published by Methuen in 1947 and by Pitman Publishing in 1948, with a second edition published by Macmillan in 1963 and a th ...'', 3rd. ed., Dover Publications, 1973. . (Tables I and II: Regular polytopes and honeycombs, pp. 294–296) * Coxeter, ''The Beauty of Geometry: Twelve Essays'', D ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
List Of Regular Polytopes
This article lists the regular polytopes in Euclidean, spherical and hyperbolic spaces. Overview This table shows a summary of regular polytope counts by rank. There are no Euclidean regular star tessellations in any number of dimensions. 1-polytopes There is only one polytope of rank 1 (1-polytope), the closed line segment bounded by its two endpoints. Every realization of this 1-polytope is regular. It has the Schläfli symbol , or a Coxeter diagram with a single ringed node, . Norman Johnson calls it a ''dion'' and gives it the Schläfli symbol . Although trivial as a polytope, it appears as the edges of polygons and other higher dimensional polytopes. It is used in the definition of uniform prisms like Schläfli symbol ×, or Coxeter diagram as a Cartesian product of a line segment and a regular polygon. 2-polytopes (polygons) The polytopes of rank 2 (2-polytopes) are called polygons. Regular polygons are equilateral and cyclic. A -gonal regular polygon is repre ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Coxeter Group
In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; for example, the symmetry group of each regular polyhedron is a finite Coxeter group. However, not all Coxeter groups are finite, and not all can be described in terms of symmetries and Euclidean reflections. Coxeter groups were introduced in 1934 as abstractions of reflection groups, and finite Coxeter groups were classified in 1935. Coxeter groups find applications in many areas of mathematics. Examples of finite Coxeter groups include the symmetry groups of regular polytopes, and the Weyl groups of simple Lie algebras. Examples of infinite Coxeter groups include the triangle groups corresponding to regular tessellations of the Euclidean plane and the hyperbolic plane, and the Weyl groups of infinite-dimensional ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Icosahedron
In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes . The plural can be either "icosahedra" () or "icosahedrons". There are infinitely many non- similar shapes of icosahedra, some of them being more symmetrical than others. The best known is the ( convex, non- stellated) regular icosahedron—one of the Platonic solids—whose faces are 20 equilateral triangles. Regular icosahedra There are two objects, one convex and one nonconvex, that can both be called regular icosahedra. Each has 30 edges and 20 equilateral triangle faces with five meeting at each of its twelve vertices. Both have icosahedral symmetry. The term "regular icosahedron" generally refers to the convex variety, while the nonconvex form is called a ''great icosahedron''. Convex regular icosahedron The convex regular icosahedron is usually referred to simply as the ''regular icosahedron'', one of the five regular Platonic solids, and is represented by its Schläfli symbol , contai ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
5-simplex
In five-dimensional geometry, a 5-simplex is a self-dual regular 5-polytope. It has six vertices, 15 edges, 20 triangle faces, 15 tetrahedral cells, and 6 5-cell facets. It has a dihedral angle of cos−1(), or approximately 78.46°. The 5-simplex is a solution to the problem: ''Make 20 equilateral triangles using 15 matchsticks, where each side of every triangle is exactly one matchstick.'' Alternate names It can also be called a hexateron, or hexa-5-tope, as a 6- facetted polytope in 5-dimensions. The name ''hexateron'' is derived from ''hexa-'' for having six facets and '' teron'' (with ''ter-'' being a corruption of ''tetra-'') for having four-dimensional facets. By Jonathan Bowers, a hexateron is given the acronym hix. As a configuration This configuration matrix represents the 5-simplex. The rows and columns correspond to vertices, edges, faces, cells and 4-faces. The diagonal numbers say how many of each element occur in the whole 5-simplex. The nondiagonal ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
5-orthoplex
In five-dimensional geometry, a 5-orthoplex, or 5- cross polytope, is a five-dimensional polytope with 10 vertices, 40 edges, 80 triangle faces, 80 tetrahedron cells, 32 5-cell 4-faces. It has two constructed forms, the first being regular with Schläfli symbol , and the second with alternately labeled (checkerboarded) facets, with Schläfli symbol or Coxeter symbol 211. It is a part of an infinite family of polytopes, called cross-polytopes or ''orthoplexes''. The dual polytope is the 5-hypercube or 5-cube. Alternate names * Pentacross, derived from combining the family name ''cross polytope'' with ''pente'' for five (dimensions) in Greek. * Triacontaditeron (or ''triacontakaiditeron'') - as a 32- facetted 5-polytope (polyteron). Acronym: tac As a configuration This configuration matrix represents the 5-orthoplex. The rows and columns correspond to vertices, edges, faces, cells and 4-faces. The diagonal numbers say how many of each element occur in the whole ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Order-5 120-cell Honeycomb
In the geometry of Hyperbolic space, hyperbolic 4-space, the order-5 120-cell honeycomb is one of five compact regular polytope, regular space-filling tessellations (or honeycomb (geometry), honeycombs). With Schläfli symbol , it has five 120-cells around each face. It is self-dual polytope, dual. It also has 600 120-cells around each vertex. Related honeycombs It is related to the (order-3) 120-cell honeycomb, and order-4 120-cell honeycomb. It is analogous to the order-5 dodecahedral honeycomb and order-5 pentagonal tiling. Birectified order-5 120-cell honeycomb The birectified order-5 120-cell honeycomb constructed by all rectified 600-cells, with octahedron and icosahedron cells, and triangle faces with a 5-5 duoprism vertex figure and has extended symmetry 5,3,3,5. See also * List of regular polytopes References *H.S.M. Coxeter, Coxeter, ''Regular Polytopes (book), Regular Polytopes'', 3rd. ed., Dover Publications, 1973. . (Tables I and II: Regular polytopes an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Order-5 Tesseractic Honeycomb
In the geometry of hyperbolic 4-space, the order-5 tesseractic honeycomb is one of five compact regular space-filling tessellations (or honeycombs). With Schläfli symbol , it has five 8-cells (also known as tesseracts) around each face. Its dual is the order-4 120-cell honeycomb, . Related polytopes and honeycombs It is related to the Euclidean 4-space (order-4) tesseractic honeycomb, , and the 5-cube, in Euclidean 5-space. The ''5-cube'' can also be seen as an ''order-3 tesseractic honeycomb'' on the surface of a 4-sphere. See also * List of regular polytopes This article lists the regular polytopes in Euclidean, spherical and hyperbolic spaces. Overview This table shows a summary of regular polytope counts by rank. There are no Euclidean regular star tessellations in any number of dimensions. ... References * Coxeter, ''The Beauty of Geometry: Twelve Essays'', Dover Publications, 1999 {{isbn, 0-486-40919-8 (Chapter 10: Regular honeycombs in hyperbolic s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dual Polytope
In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. Such dual figures remain combinatorial or abstract polyhedra, but not all can also be constructed as geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron. Duality preserves the symmetries of a polyhedron. Therefore, for many classes of polyhedra defined by their symmetries, the duals belong to a corresponding symmetry class. For example, the regular polyhedrathe (convex) Platonic solids and (star) Kepler–Poinsot polyhedraform dual pairs, where the regular tetrahedron is self-dual. The dual of an isogonal polyhedron (one in which any two vertices are equivalent under symmetries of the polyhedron) is an isohedral polyhedron (one in which any two faces are equivalent .., and vice v ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Honeycomb (geometry)
In geometry, a honeycomb is a ''space filling'' or ''close packing'' of polyhedron, polyhedral or higher-dimensional ''cells'', so that there are no gaps. It is an example of the more general mathematical ''tiling'' or ''tessellation'' in any number of dimensions. Its dimension can be clarified as ''n''-honeycomb for a honeycomb of ''n''-dimensional space. Honeycombs are usually constructed in ordinary Euclidean geometry, Euclidean ("flat") space. They may also be constructed in non-Euclidean geometry, non-Euclidean spaces, such as #Hyperbolic honeycombs, hyperbolic honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space. Classification There are infinitely many honeycombs, which have only been partially classified. The more regular ones have attracted the most interest, while a rich and varied assortment of others continue to be discovered. The simplest honeycombs to build are formed from stacked layers or ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tessellation
A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called ''tiles'', with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety of geometries. A periodic tiling has a repeating pattern. Some special kinds include '' regular tilings'' with regular polygonal tiles all of the same shape, and '' semiregular tilings'' with regular tiles of more than one shape and with every corner identically arranged. The patterns formed by periodic tilings can be categorized into 17 wallpaper groups. A tiling that lacks a repeating pattern is called "non-periodic". An '' aperiodic tiling'' uses a small set of tile shapes that cannot form a repeating pattern (an aperiodic set of prototiles). A '' tessellation of space'', also known as a space filling or honeycomb, can be defined in the geometry of higher dimensions. A real physical tessellation is a tiling made of materials such as ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Regular Polytope
In mathematics, a regular polytope is a polytope whose symmetry group acts transitive group action, transitively on its flag (geometry), flags, thus giving it the highest degree of symmetry. In particular, all its elements or -faces (for all , where is the dimension of the polytope) — cells, faces and so on — are also transitive on the symmetries of the polytope, and are themselves regular polytopes of dimension . Regular polytopes are the generalised analog in any number of dimensions of regular polygons (for example, the square (geometry), square or the regular pentagon) and regular polyhedra (for example, the cube). The strong symmetry of the regular polytopes gives them an aesthetics, aesthetic quality that interests both mathematicians and non-mathematicians. Classically, a regular polytope in dimensions may be defined as having regular Facet (geometry), facets (-faces) and regular vertex figures. These two conditions are sufficient to ensure that all faces ar ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hyperbolic Space
In mathematics, hyperbolic space of dimension ''n'' is the unique simply connected, ''n''-dimensional Riemannian manifold of constant sectional curvature equal to −1. It is homogeneous, and satisfies the stronger property of being a symmetric space. There are many ways to construct it as an open subset of \mathbb R^n with an explicitly written Riemannian metric; such constructions are referred to as models. Hyperbolic 2-space, H2, which was the first instance studied, is also called the hyperbolic plane. It is also sometimes referred to as Lobachevsky space or Bolyai–Lobachevsky space after the names of the author who first published on the topic of hyperbolic geometry. Sometimes the qualificative "real" is added to distinguish it from complex hyperbolic spaces. Hyperbolic space serves as the prototype of a Gromov hyperbolic space, which is a far-reaching notion including differential-geometric as well as more combinatorial spaces via a synthetic approach to negati ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |