Open Mapping Theorem
   HOME





Open Mapping Theorem
Open mapping theorem may refer to: * Open mapping theorem (functional analysis) (also known as the Banach–Schauder theorem), states that a surjective continuous linear transformation of a Banach space ''X'' onto a Banach space ''Y'' is an open mapping * Open mapping theorem (complex analysis), states that a non-constant holomorphic function on a connected open set in the complex plane is an open mapping * Open mapping theorem (topological groups), states that a surjective continuous homomorphism of a locally compact Hausdorff group ''G'' onto a locally compact Hausdorff group ''H'' is an open mapping if ''G'' is ''σ''-compact. Like the open mapping theorem in functional analysis, the proof in the setting of topological groups uses the Baire category theorem. See also * In calculus, part of the inverse function theorem which states that a continuously differentiable function between Euclidean spaces whose derivative matrix is invertible at a point is an open mapping in a nei ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Open Mapping Theorem (functional Analysis)
In functional analysis, the open mapping theorem, also known as the Banach–Schauder theorem or the Banach theorem (named after Stefan Banach and Juliusz Schauder), is a fundamental result that states that if a bounded or continuous linear operator between Banach spaces is surjective then it is an open map. A special case is also called the bounded inverse theorem (also called inverse mapping theorem or Banach isomorphism theorem), which states that a bijective bounded linear operator T from one Banach space to another has bounded inverse T^. Statement and proof The proof here uses the Baire category theorem, and completeness of both E and F is essential to the theorem. The statement of the theorem is no longer true if either space is assumed to be only a normed vector space; see . The proof is based on the following lemmas, which are also somewhat of independent interest. A linear map f : E \to F between topological vector spaces is said to be nearly open if, for e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Open Mapping Theorem (complex Analysis)
In complex analysis, the open mapping theorem states that if U is a domain of the complex plane \mathbb and f: U\to \mathbb is a non-constant holomorphic function, then f is an open map (i.e. it sends open subsets of U to open subsets of \mathbb, and we have invariance of domain.). The open mapping theorem points to the sharp difference between holomorphy and real-differentiability. On the real line, for example, the differentiable function f(x)=x^2 is not an open map, as the image of the open interval (-1, 1) is the half-open interval [0, 1). The theorem for example implies that a non-constant holomorphic function cannot map an open disk ''onto'' a portion of any line embedded in the complex plane. Images of holomorphic functions can be of real dimension zero (if constant) or two (if non-constant) but never of dimension 1. Proof Assume f: U\to \mathbb is a non-constant holomorphic function and U is a domain of the complex plane. We have to show that every point in f(U) is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Groups
In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other. Topological groups were studied extensively in the period of 1925 to 1940. Haar and Weil (respectively in 1933 and 1940) showed that the integrals and Fourier series are special cases of a construct that can be defined on a very wide class of topological groups. Topological groups, along with continuous group actions, are used to study continuous symmetries, which have many applications, for example, in physics. In functional analysis, every topological vector space is an additive topological group with the additional property that scalar multiplication is continuous; consequently, many results from the theory of topological groups can be applied to functional analysi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Surjective
In mathematics, a surjective function (also known as surjection, or onto function ) is a function such that, for every element of the function's codomain, there exists one element in the function's domain such that . In other words, for a function , the codomain is the image of the function's domain . It is not required that be unique; the function may map one or more elements of to the same element of . The term ''surjective'' and the related terms '' injective'' and ''bijective'' were introduced by Nicolas Bourbaki, a group of mainly French 20th-century mathematicians who, under this pseudonym, wrote a series of books presenting an exposition of modern advanced mathematics, beginning in 1935. The French word '' sur'' means ''over'' or ''above'', and relates to the fact that the image of the domain of a surjective function completely covers the function's codomain. Any function induces a surjection by restricting its codomain to the image of its domain. Every surjec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homomorphism
In algebra, a homomorphism is a morphism, structure-preserving map (mathematics), map between two algebraic structures of the same type (such as two group (mathematics), groups, two ring (mathematics), rings, or two vector spaces). The word ''homomorphism'' comes from the Ancient Greek language: () meaning "same" and () meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German meaning "similar" to meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925). Homomorphisms of vector spaces are also called linear maps, and their study is the subject of linear algebra. The concept of homomorphism has been generalized, under the name of morphism, to many other structures that either do not have an underlying set, or are not algebraic. This generalization is the starting point of category theory. A homomorphism may also be an isomorphis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hausdorff Space
In topology and related branches of mathematics, a Hausdorff space ( , ), T2 space or separated space, is a topological space where distinct points have disjoint neighbourhoods. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters. Hausdorff spaces are named after Felix Hausdorff, one of the founders of topology. Hausdorff's original definition of a topological space (in 1914) included the Hausdorff condition as an axiom. Definitions Points x and y in a topological space X can be '' separated by neighbourhoods'' if there exists a neighbourhood U of x and a neighbourhood V of y such that U and V are disjoint (U\cap V=\varnothing). X is a Hausdorff space if any two distinct points in X are separated by neighbourhoods. This condition is the third separation axiom (after T0 and T1), which is why Hausdorff ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Functional Analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (for example, Inner product space#Definition, inner product, Norm (mathematics)#Definition, norm, or Topological space#Definitions, topology) and the linear transformation, linear functions defined on these spaces and suitably respecting these structures. The historical roots of functional analysis lie in the study of function space, spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining, for example, continuous function, continuous or unitary operator, unitary operators between function spaces. This point of view turned out to be particularly useful for the study of differential equations, differential and integral equations. The usage of the word ''functional (mathematics), functional'' as a noun goes back to the calculus of v ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Baire Category Theorem
The Baire category theorem (BCT) is an important result in general topology and functional analysis. The theorem has two forms, each of which gives sufficient conditions for a topological space to be a Baire space (a topological space such that the intersection of countably many dense open sets is still dense). It is used in the proof of results in many areas of analysis and geometry, including some of the fundamental theorems of functional analysis. Versions of the Baire category theorem were first proved independently in 1897 by Osgood for the real line \R and in 1899 by Baire for Euclidean space \R^n. The more general statement for completely metrizable spaces was first shown by Hausdorff in 1914. Statement A Baire space is a topological space X in which every countable intersection of open dense sets is dense in X. See the corresponding article for a list of equivalent characterizations, as some are more useful than others depending on the application. * (BCT1) Every ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Calculus
Calculus is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the calculus of infinitesimals", it has two major branches, differential calculus and integral calculus. The former concerns instantaneous Rate of change (mathematics), rates of change, and the slopes of curves, while the latter concerns accumulation of quantities, and areas under or between curves. These two branches are related to each other by the fundamental theorem of calculus. They make use of the fundamental notions of convergence (mathematics), convergence of infinite sequences and Series (mathematics), infinite series to a well-defined limit (mathematics), limit. It is the "mathematical backbone" for dealing with problems where variables change with time or another reference variable. Infinitesimal calculus was formulated separately ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inverse Function Theorem
In mathematics, the inverse function theorem is a theorem that asserts that, if a real function ''f'' has a continuous derivative near a point where its derivative is nonzero, then, near this point, ''f'' has an inverse function. The inverse function is also differentiable, and the '' inverse function rule'' expresses its derivative as the multiplicative inverse of the derivative of ''f''. The theorem applies verbatim to complex-valued functions of a complex variable. It generalizes to functions from ''n''-tuples (of real or complex numbers) to ''n''-tuples, and to functions between vector spaces of the same finite dimension, by replacing "derivative" with "Jacobian matrix" and "nonzero derivative" with "nonzero Jacobian determinant". If the function of the theorem belongs to a higher differentiability class, the same is true for the inverse function. There are also versions of the inverse function theorem for holomorphic functions, for differentiable maps between manifold ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Derivative
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point. The tangent line is the best linear approximation of the function near that input value. For this reason, the derivative is often described as the instantaneous rate of change, the ratio of the instantaneous change in the dependent variable to that of the independent variable. The process of finding a derivative is called differentiation. There are multiple different notations for differentiation. '' Leibniz notation'', named after Gottfried Wilhelm Leibniz, is represented as the ratio of two differentials, whereas ''prime notation'' is written by adding a prime mark. Higher order notations represent repeated differentiation, and they are usually denoted in Leib ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euclidean Spaces
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces'' of any positive integer dimension ''n'', which are called Euclidean ''n''-spaces when one wants to specify their dimension. For ''n'' equal to one or two, they are commonly called respectively Euclidean lines and Euclidean planes. The qualifier "Euclidean" is used to distinguish Euclidean spaces from other spaces that were later considered in physics and modern mathematics. Ancient Greek geometers introduced Euclidean space for modeling the physical space. Their work was collected by the ancient Greek mathematician Euclid in his ''Elements'', with the great innovation of '' proving'' all properties of the space as theorems, by starting from a few fundamental properties, called ''postulates'', which either were considered as evident (for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]