Omnitruncated 6-simplex Honeycomb
In six-dimensional Euclidean geometry, the omnitruncated 6-simplex honeycomb is a space-filling tessellation (or honeycomb). It is composed entirely of omnitruncated 6-simplex facets. The facets of all omnitruncated simplectic honeycombs are called permutahedra and can be positioned in ''n+1'' space with integral coordinates, permutations of the whole numbers (0,1,..,n). A lattice The A lattice (also called A) is the union of seven A6 lattices, and has the vertex arrangement of the dual to the ''omnitruncated 6-simplex honeycomb'', and therefore the Voronoi cell of this lattice is the omnitruncated 6-simplex. : ∪ ∪ ∪ ∪ ∪ ∪ = dual of Related polytopes and honeycombs See also Regular and uniform honeycombs in 6-space: * 6-cubic honeycomb *6-demicubic honeycomb *6-simplex honeycomb In six-dimensional Euclidean geometry, the 6-simplex honeycomb is a space-filling tessellation (or honeycomb). The tessellation fills space by 6-simplex, rec ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Uniform 7-polytope
In seven-dimensional geometry, a 7-polytope is a polytope contained by 6-polytope facets. Each 5-polytope ridge being shared by exactly two 6-polytope facets. A uniform 7-polytope is one whose symmetry group is transitive on vertices and whose facets are uniform 6-polytopes. Regular 7-polytopes Regular 7-polytopes are represented by the Schläfli symbol with u 6-polytopes facets around each 4-face. There are exactly three such convex regular 7-polytopes: # - 7-simplex # - 7-cube # - 7-orthoplex There are no nonconvex regular 7-polytopes. Characteristics The topology of any given 7-polytope is defined by its Betti numbers and torsion coefficients.Richeson, D.; ''Euler's Gem: The Polyhedron Formula and the Birth of Topoplogy'', Princeton, 2008. The value of the Euler characteristic used to characterise polyhedra does not generalize usefully to higher dimensions, whatever their underlying topology. This inadequacy of the Euler characteristic to reliably disting ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Omnitruncated 6-simplex
In six-dimensional geometry, a pentellated 6-simplex is a convex uniform 6-polytope with 5th order truncations of the regular 6-simplex. There are unique 10 degrees of pentellations of the 6-simplex with permutations of truncations, cantellations, runcinations, and sterications. The simple pentellated 6-simplex is also called an expanded 6-simplex, constructed by an expansion operation applied to the regular 6-simplex. The highest form, the ''pentisteriruncicantitruncated 6-simplex'', is called an ''omnitruncated 6-simplex'' with all of the nodes ringed. Pentellated 6-simplex Alternate names * Expanded 6-simplex * Small terated tetradecapeton (Acronym: staf) (Jonathan Bowers) Coordinates The vertices of the ''pentellated 6-simplex'' can be positioned in 7-space as permutations of (0,1,1,1,1,1,2). This construction is based on facets of the pentellated 7-orthoplex. A second construction in 7-space, from the center of a rectified 7-orthoplex is given by coordinate ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Norman Johnson (mathematician)
Norman Woodason Johnson () was a mathematician at Wheaton College, Norton, Massachusetts. Early life and education Norman Johnson was born on in Chicago. His father had a bookstore and published a local newspaper. Johnson earned his undergraduate mathematics degree in 1953 at Carleton College in Northfield, Minnesota followed by a master's degree from the University of Pittsburgh. After graduating in 1953, Johnson did alternative civilian service as a conscientious objector. He earned his PhD from the University of Toronto in 1966 with a dissertation title of ''The Theory of Uniform Polytopes and Honeycombs'' under the supervision of H. S. M. Coxeter Harold Scott MacDonald "Donald" Coxeter, (9 February 1907 – 31 March 2003) was a British and later also Canadian geometer. He is regarded as one of the greatest geometers of the 20th century. Biography Coxeter was born in Kensington t .... From there, he accepted a position in the Mathematics Department of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
2 22 Honeycomb
In geometry, the 222 honeycomb is a uniform tessellation of the six-dimensional Euclidean space. It can be represented by the Schläfli symbol . It is constructed from 221 facets and has a 122 vertex figure, with 54 221 polytopes around every vertex. Its vertex arrangement is the '' E6 lattice'', and the root system of the E6 Lie group so it can also be called the E6 honeycomb. Construction It is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 6-dimensional space. The facet information can be extracted from its Coxeter–Dynkin diagram, . Removing a node on the end of one of the 2-node branches leaves the 221, its only facet type, The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes 122, . The edge figure is the vertex figure of the vertex figure, here being a birectified 5-simplex, ''t''2, . The face figure is the vertex figure of the edge figure, here being a triangular duoprism, &ti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Truncated 6-simplex Honeycomb
In six-dimensional Euclidean geometry, the cyclotruncated 6-simplex honeycomb is a space-filling tessellation (or honeycomb). The tessellation fills space by 6-simplex, truncated 6-simplex, bitruncated 6-simplex, and tritruncated 6-simplex facets. These facet types occur in proportions of 2:2:2:1 respectively in the whole honeycomb. Structure It can be constructed by seven sets of parallel hyperplanes that divide space. The hyperplane intersections generate cyclotruncated 5-simplex honeycomb divisions on each hyperplane. Related polytopes and honeycombs See also Regular and uniform honeycombs in 6-space: * 6-cubic honeycomb *6-demicubic honeycomb *6-simplex honeycomb *Omnitruncated 6-simplex honeycomb In six-dimensional Euclidean geometry, the omnitruncated 6-simplex honeycomb is a space-filling tessellation (or honeycomb). It is composed entirely of omnitruncated 6-simplex facets. The facets of all omnitruncated simplectic honeycombs are c ... * 222 honeycomb Notes ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
6-simplex Honeycomb
In six-dimensional Euclidean geometry, the 6-simplex honeycomb is a space-filling tessellation (or honeycomb). The tessellation fills space by 6-simplex, rectified 6-simplex, and birectified 6-simplex facets. These facet types occur in proportions of 1:1:1 respectively in the whole honeycomb. A6 lattice This vertex arrangement is called the A6 lattice or 6-simplex lattice. The 42 vertices of the expanded 6-simplex vertex figure represent the 42 roots of the _6 Coxeter group. It is the 6-dimensional case of a simplectic honeycomb. Around each vertex figure are 126 facets: 7+7 6-simplex, 21+21 rectified 6-simplex, 35+35 birectified 6-simplex, with the count distribution from the 8th row of Pascal's triangle. The A lattice (also called A) is the union of seven A6 lattices, and has the vertex arrangement of the dual to the omnitruncated 6-simplex honeycomb, and therefore the Voronoi cell of this lattice is the omnitruncated 6-simplex. : ∪ ∪ ∪ ∪ ∪ ∪ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
6-demicubic Honeycomb
The 6-demicubic honeycomb or demihexeractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 6-space. It is constructed as an alternation of the regular 6-cube honeycomb. It is composed of two different types of facets. The 6-cubes become alternated into 6-demicubes h and the alternated vertices create 6-orthoplex facets. D6 lattice The vertex arrangement of the 6-demicubic honeycomb is the D6 lattice. The 60 vertices of the rectified 6-orthoplex vertex figure of the ''6-demicubic honeycomb'' reflect the kissing number 60 of this lattice. The best known is 72, from the E6 lattice and the 222 honeycomb. The D lattice (also called D) can be constructed by the union of two D6 lattices. This packing is only a lattice for even dimensions. The kissing number is 25=32 (2n-1 for n8). : ∪ The D lattice (also called D and C) can be constructed by the union of all four 6-demicubic lattices: It is also the 6-dimensional body centered cubic, the union o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
6-cubic Honeycomb
The 6-cubic honeycomb or hexeractic honeycomb is the only regular space-filling tessellation (or honeycomb) in Euclidean 6-space. It is analogous to the square tiling of the plane and to the cubic honeycomb of 3-space. Constructions There are many different Wythoff constructions of this honeycomb. The most symmetric form is regular, with Schläfli symbol . Another form has two alternating 6-cube facets (like a checkerboard) with Schläfli symbol . The lowest symmetry Wythoff construction has 64 types of facets around each vertex and a prismatic product Schläfli symbol (6). Related honeycombs The ,34,4 , Coxeter group generates 127 permutations of uniform tessellations, 71 with unique symmetry and 70 with unique geometry. The expanded 6-cubic honeycomb is geometrically identical to the 6-cubic honeycomb. The ''6-cubic honeycomb'' can be alternated into the 6-demicubic honeycomb, replacing the 6-cubes with 6-demicubes, and the alternated gaps are filled by 6-orth ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Voronoi Cell
In mathematics, a Voronoi diagram is a partition of a plane into regions close to each of a given set of objects. In the simplest case, these objects are just finitely many points in the plane (called seeds, sites, or generators). For each seed there is a corresponding region, called a Voronoi cell, consisting of all points of the plane closer to that seed than to any other. The Voronoi diagram of a set of points is dual to that set's Delaunay triangulation. The Voronoi diagram is named after mathematician Georgy Voronoy, and is also called a Voronoi tessellation, a Voronoi decomposition, a Voronoi partition, or a Dirichlet tessellation (after Peter Gustav Lejeune Dirichlet). Voronoi cells are also known as Thiessen polygons. Voronoi diagrams have practical and theoretical applications in many fields, mainly in science and technology, but also in visual art. The simplest case In the simplest case, shown in the first picture, we are given a finite set of points in the Euc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vertex Arrangement
In geometry, a vertex arrangement is a set of points in space described by their relative positions. They can be described by their use in polytopes. For example, a ''square vertex arrangement'' is understood to mean four points in a plane, equal distance and angles from a center point. Two polytopes share the same ''vertex arrangement'' if they share the same 0-skeleton. A group of polytopes that shares a vertex arrangement is called an ''army''. Vertex arrangement The same set of vertices can be connected by edges in different ways. For example, the ''pentagon'' and ''pentagram'' have the same ''vertex arrangement'', while the second connects alternate vertices. A ''vertex arrangement'' is often described by the convex hull polytope which contains it. For example, the regular ''pentagram'' can be said to have a (regular) ''pentagonal vertex arrangement''. Infinite tilings can also share common ''vertex arrangements''. For example, this triangular lattice of points ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
A6 Lattice
In six-dimensional Euclidean geometry, the 6-simplex honeycomb is a space-filling tessellation (or honeycomb). The tessellation fills space by 6-simplex, rectified 6-simplex, and birectified 6-simplex facets. These facet types occur in proportions of 1:1:1 respectively in the whole honeycomb. A6 lattice This vertex arrangement is called the A6 lattice or 6-simplex lattice. The 42 vertices of the expanded 6-simplex vertex figure represent the 42 roots of the _6 Coxeter group. It is the 6-dimensional case of a simplectic honeycomb. Around each vertex figure are 126 facets: 7+7 6-simplex, 21+21 rectified 6-simplex, 35+35 birectified 6-simplex, with the count distribution from the 8th row of Pascal's triangle. The A lattice (also called A) is the union of seven A6 lattices, and has the vertex arrangement of the dual to the omnitruncated 6-simplex honeycomb, and therefore the Voronoi cell of this lattice is the omnitruncated 6-simplex. : ∪ ∪ ∪ ∪ ∪ ∪ = dual of R ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Permutahedron
In mathematics, the permutohedron of order ''n'' is an (''n'' − 1)-dimensional polytope embedded in an ''n''-dimensional space. Its vertex coordinates (labels) are the permutations of the first ''n'' natural numbers. The edges identify the shortest possible paths (sets of transpositions) that connect two vertices (permutations). Two permutations connected by an edge differ in only two places (one transposition), and the numbers on these places are neighbors (differ in value by 1). The image on the right shows the permutohedron of order 4, which is the truncated octahedron. Its vertices are the 24 permutations of (1, 2, 3, 4). Parallel edges have the same edge color. The 6 edge colors correspond to the 6 possible transpositions of 4 elements, i.e. they indicate in which two places the connected permutations differ. (E.g. red edges connect permutations that differ in the last two places.) History According to , permutohedra were first studied by . The name ''permu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |