HOME



picture info

Observable Universe
The observable universe is a ball-shaped region of the universe comprising all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time, because the electromagnetic radiation from these objects has had time to reach the Solar System and Earth since the beginning of the cosmological expansion. There may be 2 trillion galaxies in the observable universe, although that number was reduced in 2021 to only several hundred billion based on data from ''New Horizons''. Assuming the universe is isotropic, the distance to the edge of the observable universe is roughly the same in every direction. That is, the observable universe is a spherical region centered on the observer and is unique for every unique observational position. The word ''observable'' in this sense does not refer to the capability of modern technology to detect light or other information from an object, or whether there is anything to be detected. It refers to the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Observable Universe With Measurements 01
In physics, an observable is a physical quantity that can be measured. Examples include Position (vector), position and momentum. In systems governed by classical mechanics, it is a real number, real-valued "function" on the set of all possible system states. In quantum physics, it is an quantum operator, operator, or gauge theory, gauge, where the property of the Quantum state, quantum state can be determined by some sequence of operational definition, operations. For example, these operations might involve submitting the system to various electromagnetic fields and eventually reading a value. Physically meaningful observables must also satisfy linear map, transformation laws that relate observations performed by different observation, observers in different frames of reference. These transformation laws are automorphisms of the state space, that is bijection, bijective transformation (mathematics), transformations that preserve certain mathematical properties of the space in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Solar System
The Solar System Capitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar System" and "solar system" structures in theinaming guidelines document. The name is commonly rendered in lower case ('solar system'), as, for example, in the ''Oxford English Dictionary'' an''Merriam-Webster's 11th Collegiate Dictionary''. is the gravitationally bound system of the Sun and the objects that orbit it. It formed 4.6 billion years ago from the gravitational collapse of a giant interstellar molecular cloud. The vast majority (99.86%) of the system's mass is in the Sun, with most of the remaining mass contained in the planet Jupiter. The four inner system planets—Mercury, Venus, Earth and Mars—are terrestrial planets, being composed primarily of rock and metal. The four giant planets of the outer system a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Big Bang Cosmology
The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the earliest known periods through its subsequent large-scale form. These models offer a comprehensive explanation for a broad range of observed phenomena, including the abundance of light elements, the cosmic microwave background (CMB) radiation, and large-scale structure. The overall uniformity of the Universe, known as the flatness problem, is explained through cosmic inflation: a sudden and very rapid expansion of space during the earliest moments. However, physics currently lacks a widely accepted theory of quantum gravity that can successfully model the earliest conditions of the Big Bang. Crucially, these models are compatible with the Hubble–Lemaître law—the observation that the farther away a galaxy is, the faster it is moving ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Recombination (cosmology)
In cosmology, recombination refers to the epoch during which charged electrons and protons first became bound to form electrically neutral hydrogen atoms. Recombination occurred about 370,000 yearsRecombination time frames: * Edward L. Wright'Javascript Cosmology Calculator(last modified 23 July 2018). With a default H_0 =  (based on ), the calculated age of the universe with a redshift of ''z'' =  is in agreement with Olive and Peacock (about 370,000 years). * : "Going forward in time now, the temperature declined, and at ''T''∼3000 K, few of the photons in the radiation field, even in its high-energy tail, had the energy required to ionize a hydrogen atom. Most of the electrons and protons then recombined. Once this happened, at a time ''t''rec = 380,000 yr after the Big Bang, the major source of opacity disappeared, and the Universe became transparent to radiation of most frequencies." * : "The million dollar question is now, 'when did recombination ha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Particle Horizon
The particle horizon (also called the cosmological horizon, the comoving horizon (in Dodelson's text), or the cosmic light horizon) is the maximum distance from which light from particles could have traveled to the observer in the age of the universe. Much like the concept of a terrestrial horizon, it represents the boundary between the observable and the unobservable regions of the universe, so its distance at the present epoch defines the size of the observable universe. Due to the expansion of the universe, it is not simply the age of the universe times the speed of light (approximately 13.8 billion light-years), but rather the speed of light times the conformal time. The existence, properties, and significance of a cosmological horizon depend on the particular cosmological model. Conformal time and the particle horizon In terms of comoving distance, the particle horizon is equal to the conformal time \eta that has passed since the Big Bang, times the speed of light c. In genera ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info