HOME





Noncommutative Quantum Field Theory
In mathematical physics, noncommutative quantum field theory (or quantum field theory on noncommutative spacetime) is an application of noncommutative mathematics to the spacetime of quantum field theory that is an outgrowth of noncommutative geometry and index theory in which the coordinate functions are noncommutative. One commonly studied version of such theories has the "canonical" commutation relation: : ^, x^i \theta^ \,\! where x^ and x^ are the hermitian generators of a noncommutative C^*-algebra of "functions on spacetime". That means that (with any given set of axes), it is impossible to accurately measure the position of a particle with respect to more than one axis. In fact, this leads to an uncertainty relation for the coordinates analogous to the Heisenberg uncertainty principle. Various lower limits have been claimed for the noncommutative scale, (i.e. how accurately positions can be measured) but there is currently no experimental evidence in favour of such a t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Mathematical Physics
Mathematical physics is the development of mathematics, mathematical methods for application to problems in physics. The ''Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and the development of mathematical methods suitable for such applications and for the formulation of physical theories". An alternative definition would also include those mathematics that are inspired by physics, known as physical mathematics. Scope There are several distinct branches of mathematical physics, and these roughly correspond to particular historical parts of our world. Classical mechanics Applying the techniques of mathematical physics to classical mechanics typically involves the rigorous, abstract, and advanced reformulation of Newtonian mechanics in terms of Lagrangian mechanics and Hamiltonian mechanics (including both approaches in the presence of constraints). Both formulations are embodied in analytical mechanics and lead ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Werner Heisenberg
Werner Karl Heisenberg (; ; 5 December 1901 – 1 February 1976) was a German theoretical physicist, one of the main pioneers of the theory of quantum mechanics and a principal scientist in the German nuclear program during World War II. He published his Umdeutung paper, ''Umdeutung'' paper in 1925, a major reinterpretation of old quantum theory. In the subsequent series of papers with Max Born and Pascual Jordan, during the same year, his matrix mechanics, matrix formulation of quantum mechanics was substantially elaborated. He is known for the uncertainty principle, which he published in 1927. Heisenberg was awarded the 1932 Nobel Prize in Physics "for the creation of quantum mechanics". Heisenberg also made contributions to the theories of the Fluid dynamics, hydrodynamics of turbulent flows, the atomic nucleus, ferromagnetism, cosmic rays, and subatomic particles. He introduced the concept of a wave function collapse. He was also instrumental in planning the first West Germa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Magnetic Field
A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to the magnetic field. A permanent magnet's magnetic field pulls on ferromagnetic materials such as iron, and attracts or repels other magnets. In addition, a nonuniform magnetic field exerts minuscule forces on "nonmagnetic" materials by three other magnetic effects: paramagnetism, diamagnetism, and antiferromagnetism, although these forces are usually so small they can only be detected by laboratory equipment. Magnetic fields surround magnetized materials, electric currents, and electric fields varying in time. Since both strength and direction of a magnetic field may vary with location, it is described mathematically by a function (mathematics), function assigning a Euclidean vector, vector to each point of space, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


D-brane
In string theory, D-branes, short for Dirichlet membrane, are a class of extended objects upon which open strings can end with Dirichlet boundary conditions, after which they are named. D-branes are typically classified by their spatial dimension, which is indicated by a number written after the ''D.'' A D0-brane is a single point, a D1-brane is a line (sometimes called a "D-string"), a D2-brane is a plane, and a D25-brane fills the highest-dimensional space considered in bosonic string theory. There are also instantonic D(−1)-branes, which are localized in both space and time. Discovery D-branes were discovered by Jin Dai, Robert Leigh, and Joseph Polchinski, and independently by Petr Hořava, in 1989. In 1995, Polchinski identified D-branes with black p-brane solutions of supergravity, a discovery that triggered the second superstring revolution and led to both holographic and M-theory dualities. Theoretical background The equations of motion of string theory r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Edward Witten
Edward Witten (born August 26, 1951) is an American theoretical physics, theoretical physicist known for his contributions to string theory, topological quantum field theory, and various areas of mathematics. He is a professor emeritus in the school of natural sciences at the Institute for Advanced Study in Princeton, New Jersey, Princeton. Witten is a researcher in string theory, quantum gravity, supersymmetry, supersymmetric quantum field theories, and other areas of mathematical physics. Witten's work has also significantly impacted pure mathematics. In 1990, he became the first physicist to be awarded a Fields Medal by the International Mathematical Union, for his mathematical insights in physics, such as his 1981 proof of the positive energy theorem in general relativity, and his interpretation of the Vaughan Jones, Jones invariants of knots as Feynman integrals. He is considered the practical founder of M-theory.Duff 1998, p. 65 Early life and education Witten was born on A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Nathan Seiberg
Nathan "Nati" Seiberg (; ; born September 22, 1956) is an Israeli American theoretical physicist who works on quantum field theory and string theory. He is currently a professor at the Institute for Advanced Study in Princeton, New Jersey, United States. Honors and awards He was recipient of a 1996 MacArthur Fellowship and the Dannie Heineman Prize for Mathematical Physics in 1998. In July 2012, he was an inaugural awardee of the Breakthrough Prize in Fundamental Physics, the creation of physicist and internet entrepreneur, Yuri Milner. In 2016, he was awarded the Dirac Medal of the ICTP. He is a Fellow of the American Academy of Arts and Sciences and a Member of the US National Academy of Sciences. Research His contributions include: * Ian Affleck, Michael Dine, and Seiberg explored nonperturbative effects in supersymmetric field theories. This work demonstrated, for the first time, that nonperturbative effects in four-dimensional field theories do not respect the su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Torus
In geometry, a torus (: tori or toruses) is a surface of revolution generated by revolving a circle in three-dimensional space one full revolution about an axis that is coplanarity, coplanar with the circle. The main types of toruses include ring toruses, horn toruses, and spindle toruses. A ring torus is sometimes colloquially referred to as a donut or doughnut. If the axis of revolution does not touch the circle, the surface has a ring shape and is called a torus of revolution, also known as a ring torus. If the axis of revolution is tangent to the circle, the surface is a horn torus. If the axis of revolution passes twice through the circle, the surface is a Lemon (geometry), spindle torus (or ''self-crossing torus'' or ''self-intersecting torus''). If the axis of revolution passes through the center of the circle, the surface is a degenerate torus, a double-covered sphere. If the revolved curve is not a circle, the surface is called a ''toroid'', as in a square toroid. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Yang–Mills Theory
Yang–Mills theory is a quantum field theory for nuclear binding devised by Chen Ning Yang and Robert Mills in 1953, as well as a generic term for the class of similar theories. The Yang–Mills theory is a gauge theory based on a special unitary group , or more generally any compact Lie group. A Yang–Mills theory seeks to describe the behavior of elementary particles using these non-abelian Lie groups and is at the core of the unification of the electromagnetic force and weak forces (i.e. ) as well as quantum chromodynamics, the theory of the strong force (based on ). Thus it forms the basis of the understanding of the Standard Model of particle physics. History and qualitative description Gauge theory in electrodynamics All known fundamental interactions can be described in terms of gauge theories, but working this out took decades. Hermann Weyl's pioneering work on this project started in 1915 when his colleague Emmy Noether proved that every conserved physical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Metric Tensor
In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allows defining distances and angles there. More precisely, a metric tensor at a point of is a bilinear form defined on the tangent space at (that is, a bilinear function that maps pairs of tangent vectors to real numbers), and a metric field on consists of a metric tensor at each point of that varies smoothly with . A metric tensor is ''positive-definite'' if for every nonzero vector . A manifold equipped with a positive-definite metric tensor is known as a Riemannian manifold. Such a metric tensor can be thought of as specifying ''infinitesimal'' distance on the manifold. On a Riemannian manifold , the length of a smooth curve between two points and can be defined by integration, and the distance between and can be defined as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Space-time
In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three-dimensional space, three dimensions of space and the one dimension of time into a single four-dimensional continuum (measurement), continuum. Spacetime diagrams are useful in visualizing and understanding Special relativity, relativistic effects, such as how different observers perceive ''where'' and ''when'' events occur. Until the turn of the 20th century, the assumption had been that the three-dimensional geometry of the universe (its description in terms of locations, shapes, distances, and directions) was distinct from time (the measurement of when events occur within the universe). However, space and time took on new meanings with the Lorentz transformation and Special relativity, special theory of relativity. In 1908, Hermann Minkowski presented a geometric interpretation of special relativity that fused time and the three spatial dimensions into a single four-dimens ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Operator Algebra
In functional analysis, a branch of mathematics, an operator algebra is an algebra of continuous linear operators on a topological vector space, with the multiplication given by the composition of mappings. The results obtained in the study of operator algebras are often phrased in algebraic terms, while the techniques used are often highly analytic.''Theory of Operator Algebras I'' By Masamichi Takesaki, Springer 2012, p vi Although the study of operator algebras is usually classified as a branch of functional analysis, it has direct applications to representation theory, differential geometry, quantum statistical mechanics, quantum information, and quantum field theory. Overview Operator algebras can be used to study arbitrary sets of operators with little algebraic relation ''simultaneously''. From this point of view, operator algebras can be regarded as a generalization of spectral theory of a single operator. In general, operator algebras are non-commutative ring ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Differential Structure
In mathematics, an ''n''- dimensional differential structure (or differentiable structure) on a set ''M'' makes ''M'' into an ''n''-dimensional differential manifold, which is a topological manifold with some additional structure that allows for differential calculus on the manifold. If ''M'' is already a topological manifold, it is required that the new topology be identical to the existing one. Definition For a natural number ''n'' and some ''k'' which may be a non-negative integer or infinity, an ''n''-dimensional ''C''''k'' differential structure is defined using a ''C''''k''-atlas, which is a set of bijections called charts between subsets of ''M'' (whose union is the whole of ''M'') and open subsets of \mathbb^: :\varphi_:M\supset W_\rightarrow U_\subset\mathbb^ which are ''C''''k''-compatible (in the sense defined below): Each chart allows a subset of the manifold to be viewed as an open subset of \mathbb^, but the usefulness of this depends on how much the charts agree ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]