Murray Gell-Mann
Murray Gell-Mann (; September 15, 1929 – May 24, 2019) was an American theoretical physicist who played a preeminent role in the development of the theory of elementary particles. Gell-Mann introduced the concept of quarks as the fundamental building blocks of the strongly interacting particles, and the renormalization group as a foundational element of quantum field theory and statistical mechanics. He played key roles in developing the concept of chirality in the theory of the weak interactions and spontaneous chiral symmetry breaking in the strong interactions, which controls the physics of the light mesons. In the 1970s he was a co-inventor of quantum chromodynamics (QCD) which explains the confinement of quarks in mesons and baryons and forms a large part of the Standard Model of elementary particles and forces. Murray Gell-Mann received the 1969 Nobel Prize in Physics for his work on the theory of elementary particles. Life and education Gell-Mann was bo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Manhattan
Manhattan ( ) is the most densely populated and geographically smallest of the Boroughs of New York City, five boroughs of New York City. Coextensive with New York County, Manhattan is the County statistics of the United States#Smallest, largest, and average area per state and territory, smallest county by area in the U.S. state of New York (state), New York. Located almost entirely on Manhattan Island near the southern tip of the state, Manhattan constitutes the center of the Northeast megalopolis and the urban core of the New York metropolitan area. Manhattan serves as New York City's Economy of New York City, economic and Government of New York City, administrative center and has been described as the cultural, financial, Media in New York City, media, and show business, entertainment capital of the world. Present-day Manhattan was originally part of Lenape territory. European settlement began with the establishment of a trading post by Dutch colonization of the Americas, D ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rod Crewther
Rodney James Crewther (23 September 1945 – 17 December 2020) was a physicist, notable in the field of gauge field theories. Education After gaining his MSc at Melbourne University where he was resident at Ormond College, Crewther was awarded a Fulbright scholarship to the California Institute of Technology. He studied under the tutelage of Nobel prizewinner Murray Gell-Mann and completed his doctorate, in 1971, after successfully defending his dissertation against the renowned theorist Richard Feynman. His thesis was entitled ''Spontaneous Breakdown of Conformal and Chiral Invariance.'' Career After his PhD, he held postdoctoral appointments at Cornell University in Ithaca, New York and the Fermi National Accelerator Laboratory in Batavia, Illinois. Subsequently, he spent twelve years in Europe, six of them as a Staff Member of the European Laboratory for Particle Physics (CERN) in Geneva, and the remainder as a research associate at the University of Berne, University o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Beta Function (physics)
In theoretical physics, specifically quantum field theory, a beta function or Gell-Mann–Low function, ''β(g)'', encodes the dependence of a coupling parameter, ''g'', on the energy scale, ''μ'', of a given physical process described by quantum field theory. It is defined by the Gell-Mann–Low equation or renormalization group equation, given by :: \beta(g) = \mu \frac = \frac ~, and, because of the underlying renormalization group, it has no explicit dependence on ''μ'', so it only depends on ''μ'' implicitly through ''g''. This dependence on the energy scale thus specified is known as the running of the coupling parameter, a fundamental feature of scale-dependence in quantum field theory, and its explicit computation is achievable through a variety of mathematical techniques. The concept of beta function was first introduced by Ernst Stueckelberg and André Petermann in 1953, and independently postulated by Murray Gell-Mann and Francis E. Low in 1954. History ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gell-Mann Matrices
Murray Gell-Mann (; September 15, 1929 – May 24, 2019) was an American theoretical physicist who played a preeminent role in the development of the theory of elementary particles. Gell-Mann introduced the concept of quarks as the fundamental building blocks of the strongly interacting particles, and the renormalization group as a foundational element of quantum field theory and statistical mechanics. He played key roles in developing the concept of chirality in the theory of the weak interactions and spontaneous chiral symmetry breaking in the strong interactions, which controls the physics of the light mesons. In the 1970s he was a co-inventor of quantum chromodynamics (QCD) which explains the confinement of quarks in mesons and baryons and forms a large part of the Standard Model of elementary particles and forces. Murray Gell-Mann received the 1969 Nobel Prize in Physics for his work on the theory of elementary particles. Life and education Gell-Mann was born in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gell-Mann And Low Theorem
In quantum field theory, the Gell-Mann and Low theorem is a mathematical statement that allows one to relate the ground (or vacuum) state of an interacting system to the ground state of the corresponding non-interacting theory. It was proved in 1951 by Murray Gell-Mann and Francis E. Low. The theorem is useful because, among other things, by relating the ground state of the interacting theory to its non-interacting ground state, it allows one to express Green's functions (which are defined as expectation values of Heisenberg-picture fields in the interacting vacuum) as expectation values of interaction picture fields in the non-interacting vacuum. While typically applied to the ground state, the Gell-Mann and Low theorem applies to any eigenstate of the Hamiltonian. Its proof relies on the concept of starting with a non-interacting Hamiltonian and adiabatically switching on the interactions. History The theorem was proved first by Gell-Mann and Low in 1951, making use of the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Neutral Particle Oscillation
In particle physics, neutral particle oscillation is the transmutation of a particle with zero electric charge into another neutral particle due to a change of a non-zero internal quantum number, via an interaction that does not conserve that quantum number. Neutral particle oscillations were first investigated in 1954 by Murray Gell-mann and Abraham Pais. For example, a neutron cannot transmute into an antineutron as that would violate the conservation of baryon number. But in those hypothetical extensions of the Standard Model which include interactions that do not strictly conserve baryon number, neutron–antineutron oscillations are predicted to occur. There is a project to search for neutron–antineutron oscillations using ultracold neutrons. Such oscillations can be classified into two types: * Particle–antiparticle oscillation (for example, oscillation). * Flavor oscillation (for example, oscillation). In those cases where the particles decay to some final prod ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Elementary Particle
In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. The Standard Model presently recognizes seventeen distinct particles—twelve fermions and five bosons. As a consequence of flavor and color combinations and antimatter, the fermions and bosons are known to have 48 and 13 variations, respectively. Among the 61 elementary particles embraced by the Standard Model number: electrons and other leptons, quarks, and the fundamental bosons. Subatomic particles such as protons or neutrons, which contain two or more elementary particles, are known as composite particles. Ordinary matter is composed of atoms, themselves once thought to be indivisible elementary particles. The name ''atom'' comes from the Ancient Greek word ''ἄτομος'' ( atomos) which means ''indivisible'' or ''uncuttable''. Despite the theories about atoms that had existed for thousands of years, the factual existence of ato ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quantum Chromodynamics
In theoretical physics, quantum chromodynamics (QCD) is the study of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type of quantum field theory called a non-abelian gauge theory, with symmetry group special unitary group, SU(3). The QCD analog of electric charge is a property called ''color''. Gluons are the force carriers of the theory, just as photons are for the electromagnetic force in quantum electrodynamics. The theory is an important part of the Standard Model of particle physics. A large body of Quantum chromodynamics#Experimental tests, experimental evidence for QCD has been gathered over the years. QCD exhibits three salient properties: * Color confinement. Due to the force between two color charges remaining constant as they are separated, the energy grows until a quark–antiquark pair is mass–energy equivalence, spontaneously produced, turning ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quark Model
In particle physics, the quark model is a classification scheme for hadrons in terms of their valence quarks—the quarks and antiquarks that give rise to the quantum numbers of the hadrons. The quark model underlies "flavor SU(3)", or the Eightfold Way, the successful classification scheme organizing the large number of lighter hadrons that were being discovered starting in the 1950s and continuing through the 1960s. It received experimental verification beginning in the late 1960s and is a valid and effective classification of them to date. The model was independently proposed by physicists Murray Gell-Mann, who dubbed them "quarks" in a concise paper, and George Zweig, who suggested "aces" in a longer manuscript. André Petermann also touched upon the central ideas from 1963 to 1965, without as much quantitative substantiation. Today, the model has essentially been absorbed as a component of the established quantum field theory of strong and electroweak particle interact ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quark
A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nucleus, atomic nuclei. All commonly observable matter is composed of up quarks, down quarks and electrons. Owing to a phenomenon known as ''color confinement'', quarks are never found in isolation; they can be found only within hadrons, which include baryons (such as protons and neutrons) and mesons, or in quark–gluon plasmas. There is also the theoretical possibility of #Other_phases_of_quark_matter, more exotic phases of quark matter. For this reason, much of what is known about quarks has been drawn from observations of hadrons. Quarks have various Intrinsic and extrinsic properties, intrinsic physical property, properties, including electric charge, mass, color charge, and Spin (physics), spin. They are the only elementary particles in the Standard Mode ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Barton Zwiebach
Barton Zwiebach (born ''Barton Zwiebach Cantor'', October 4, 1954) is a Peruvian string theorist and professor at the Massachusetts Institute of Technology. Work Zwiebach studied electrical engineering at the Universidad Nacional de Ingeniería in Peru, graduating in 1977. He subsequently attended graduate school in physics at the California Institute of Technology. He obtained his Ph.D. in 1983, working under the supervision of Murray Gell-Mann. He then held postdoctoral positions at the University of California, Berkeley, and at the Massachusetts Institute of Technology (MIT). At MIT, he became an assistant professor of physics in 1987, and a permanent member of the faculty in 1994. He is one of the world's leading experts in string field theory String field theory (SFT) is a formalism in string theory in which the dynamics of relativistic strings is reformulated in the language of quantum field theory. This is accomplished at the level of perturbation theory by finding a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |