HOME





Multibody Modeling
Dynamical simulation, in computational physics, is the simulation of systems of objects that are free to move, usually in three dimensions according to Newton's laws of classical dynamics, or approximations thereof. Dynamical simulation is used in computer animation to assist animators to produce realistic motion, in industrial design (for example to simulate crashes as an early step in crash testing), and in video games. Body movement is calculated using time integration methods. Physics engines In computer science, a program called a physics engine is used to model the behaviors of objects in space. These engines allow simulation of the way bodies of many types are affected by a variety of physical stimuli. They are also used to create dynamical simulations without having to know anything about physics. Physics engines are used throughout the video game and movie industry, but not all physics engines are alike. They are generally broken into real-time and the high precision ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


TRUE Procedural Animation
True most commonly refers to truth, the state of being in congruence with fact or reality. True may also refer to: Places * True, West Virginia, an unincorporated community in the United States * True, Wisconsin, a town in the United States * True, a townland in County Tyrone, Northern Ireland People * True (singer) (stylized as TRUE), the stage name of Japanese singer Miho Karasawa * True (surname) * True O'Brien (born 1994), an American model and actress Arts, entertainment, and media Music Albums * ''True'' (Avicii album), 2013 * ''True'' (Jon Anderson album), 2024 * ''True'' (L'Arc-en-Ciel album), 1996 * ''True'' (Mika Nakashima album), 2002 * ''True'' (Roy Montgomery and Chris Heaphy album), 1999 * ''True'' (Spandau Ballet album) or the title song (see below), 1983 * ''True'' (TrinityRoots album) or the title song, 2001 * ''True'' (TRU album), 1995 * ''True'' (EP), by Solange Knowles, 2012 Songs * "True" (Brandy song), 2008 * "True" (Concrete Blonde song), ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Physics Engines
A physics engine is computer software that provides an approximate simulation of certain physical systems, typically classical dynamics, including rigid body dynamics (including collision detection), soft body dynamics, and fluid dynamics. It is of use in the domains of computer graphics, video games and film ( CGI). Their main uses are in video games (typically as middleware), in which case the simulations are in real-time. The term is sometimes used more generally to describe any software system for simulating physical phenomena, such as high-performance scientific simulation. Description There are generally two classes of physics engines: real-time and high-precision. High-precision physics engines require more processing power to calculate very precise physics and are usually used by scientists and computer-animated movies. Real-time physics engines—as used in video games and other forms of interactive computing—use simplified calculations and decreased accuracy to c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Moment Of Inertia
The moment of inertia, otherwise known as the mass moment of inertia, angular/rotational mass, second moment of mass, or most accurately, rotational inertia, of a rigid body is defined relatively to a rotational axis. It is the ratio between the torque applied and the resulting angular acceleration about that axis. It plays the same role in rotational motion as mass does in linear motion. A body's moment of inertia about a particular axis depends both on the mass and its distribution relative to the axis, increasing with mass and distance from the axis. It is an intensive and extensive properties, extensive (additive) property: for a point particle, point mass the moment of inertia is simply the mass times the square of the perpendicular distance to the axis of rotation. The moment of inertia of a rigid composite system is the sum of the moments of inertia of its component subsystems (all taken about the same axis). Its simplest definition is the second Moment (physics), mome ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Euler's Equations
In mathematics and physics, many topics are named in honor of Swiss mathematician Leonhard Euler (1707–1783), who made many important discoveries and innovations. Many of these items named after Euler include their own unique function, equation, formula, identity, number (single or sequence), or other mathematical entity. Many of these entities have been given simple yet ambiguous names such as Euler's function, Euler's equation, and Euler's formula. Euler's work touched upon so many fields that he is often the earliest written reference on a given matter. In an effort to avoid naming everything after Euler, some discoveries and theorems are attributed to the first person to have proved them ''after'' Euler. Conjectures *Euler's sum of powers conjecture disproved for exponents 4 and 5 during the 20th century; unsolved for higher exponents * Euler's Graeco-Latin square conjecture proved to be true for and disproved otherwise, during the 20th century Equations Usually, '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Euler%27s Equations (rigid Body Dynamics)
In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. They are named in honour of Leonhard Euler. In the absence of applied torques, one obtains the Euler top. When the torques are due to gravity, there are special cases when the motion of the top is integrable. Formulation Their general vector form is : \mathbf \dot + \boldsymbol\omega \times \left( \mathbf \boldsymbol\omega \right) = \mathbf. where ''M'' is the applied torques and ''I'' is the inertia matrix. The vector \dot is the angular acceleration. Again, note that all quantities are defined in the rotating reference frame. In orthogonal principal axes of inertia coordinates the equations become : \begin I_1\,\dot_ + (I_3-I_2)\,\omega_2\,\omega_3 &= M_\\ I_2\,\dot_ + (I_1-I_3)\,\omega_3\,\omega_1 &= M_\\ I_3\,\dot_ + ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ordinary Differential Equations
In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable. As with any other DE, its unknown(s) consists of one (or more) function(s) and involves the derivatives of those functions. The term "ordinary" is used in contrast with ''partial'' differential equations (PDEs) which may be with respect to one independent variable, and, less commonly, in contrast with ''stochastic'' differential equations (SDEs) where the progression is random. Differential equations A linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form :a_0(x)y +a_1(x)y' + a_2(x)y'' +\cdots +a_n(x)y^+b(x)=0, where a_0(x),\ldots,a_n(x) and b(x) are arbitrary differentiable functions that do not need to be linear, and y',\ldots, y^ are the successive derivatives of the unknown function y of the variable x. Among ord ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Physics Engine
A physics engine is computer software that provides an approximate simulation of certain physical systems, typically classical dynamics, including rigid body dynamics (including collision detection), soft body dynamics, and fluid dynamics. It is of use in the domains of computer graphics, video games and film ( CGI). Their main uses are in video games (typically as middleware), in which case the simulations are in real-time. The term is sometimes used more generally to describe any software system for simulating physical phenomena, such as high-performance scientific simulation. Description There are generally two classes of physics engines: real-time and high-precision. High-precision physics engines require more processing power to calculate very precise physics and are usually used by scientists and computer-animated movies. Real-time physics engines—as used in video games and other forms of interactive computing—use simplified calculations and decreased accura ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Relativistic Dynamics
''For classical dynamics at relativistic speeds, see relativistic mechanics.'' Relativistic dynamics refers to a combination of relativistic and quantum concepts to describe the relationships between the motion and properties of a relativistic system and the forces acting on the system. What distinguishes relativistic dynamics from other physical theories is the use of an invariant scalar evolution parameter to monitor the historical evolution of space-time events. In a scale-invariant theory, the strength of particle interactions does not depend on the energy of the particles involved. Twentieth century experiments showed that the physical description of microscopic and submicroscopic objects moving at or near the speed of light raised questions about such fundamental concepts as space, time, mass, and energy. The theoretical description of the physical phenomena required the integration of concepts from relativity and quantum theory. Vladimir Fock was the first to propose an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Center Of Mass
In physics, the center of mass of a distribution of mass in space (sometimes referred to as the barycenter or balance point) is the unique point at any given time where the weight function, weighted relative position (vector), position of the distributed mass sums to zero. For a rigid body containing its center of mass, this is the point to which a force may be applied to cause a linear acceleration without an angular acceleration. Calculations in mechanics are often simplified when formulated with respect to the center of mass. It is a hypothetical point where the entire mass of an object may be assumed to be concentrated to visualise its motion. In other words, the center of mass is the particle equivalent of a given object for application of Newton's laws of motion. In the case of a single rigid body, the center of mass is fixed in relation to the body, and if the body has uniform density, it will be located at the centroid. The center of mass may be located outside the Phys ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Angular Velocity
In physics, angular velocity (symbol or \vec, the lowercase Greek letter omega), also known as the angular frequency vector,(UP1) is a pseudovector representation of how the angular position or orientation of an object changes with time, i.e. how quickly an object rotates (spins or revolves) around an axis of rotation and how fast the axis itself changes direction. The magnitude of the pseudovector, \omega=\, \boldsymbol\, , represents the '' angular speed'' (or ''angular frequency''), the angular rate at which the object rotates (spins or revolves). The pseudovector direction \hat\boldsymbol=\boldsymbol/\omega is normal to the instantaneous plane of rotation or angular displacement. There are two types of angular velocity: * Orbital angular velocity refers to how fast a point object revolves about a fixed origin, i.e. the time rate of change of its angular position relative to the origin. * Spin angular velocity refers to how fast a rigid body rotates around a f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inertia Tensor
The moment of inertia, otherwise known as the mass moment of inertia, angular/rotational mass, second moment of mass, or most accurately, rotational inertia, of a rigid body is defined relatively to a rotational axis. It is the ratio between the torque applied and the resulting angular acceleration about that axis. It plays the same role in rotational motion as mass does in linear motion. A body's moment of inertia about a particular axis depends both on the mass and its distribution relative to the axis, increasing with mass and distance from the axis. It is an extensive (additive) property: for a point mass the moment of inertia is simply the mass times the square of the perpendicular distance to the axis of rotation. The moment of inertia of a rigid composite system is the sum of the moments of inertia of its component subsystems (all taken about the same axis). Its simplest definition is the second moment of mass with respect to distance from an axis. For bodies constr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]