Montel Space
In functional analysis and related areas of mathematics, a Montel space, named after Paul Montel, is any topological vector space (TVS) in which an analog of Montel's theorem holds. Specifically, a Montel space is a barrelled topological vector space in which every closed and bounded subset is compact. Definition A topological vector space (TVS) has the if every closed and bounded subset is compact. A is a barrelled topological vector space with the Heine–Borel property. Equivalently, it is an infrabarrelled semi-Montel space where a Hausdorff locally convex topological vector space is called a or if every bounded subset is relatively compact.A subset S of a topological space X is called relatively compact is its closure in X is compact. A subset of a TVS is compact if and only if it is complete and totally bounded. A is a Fréchet space that is also a Montel space. Characterizations A separable Fréchet space is a Montel space if and only if each ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Functional Analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (for example, Inner product space#Definition, inner product, Norm (mathematics)#Definition, norm, or Topological space#Definitions, topology) and the linear transformation, linear functions defined on these spaces and suitably respecting these structures. The historical roots of functional analysis lie in the study of function space, spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining, for example, continuous function, continuous or unitary operator, unitary operators between function spaces. This point of view turned out to be particularly useful for the study of differential equations, differential and integral equations. The usage of the word ''functional (mathematics), functional'' as a noun goes back to the calculus of v ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Separable Space
In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence ( x_n )_^ of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence. Like the other axioms of countability, separability is a "limitation on size", not necessarily in terms of cardinality (though, in the presence of the Hausdorff axiom, this does turn out to be the case; see below) but in a more subtle topological sense. In particular, every continuous function on a separable space whose image is a subset of a Hausdorff space is determined by its values on the countable dense subset. Contrast separability with the related notion of second countability, which is in general stronger but equivalent on the class of metrizable spaces. First examples Any topological space that is itself finite or countably infinite is separable, for the whole space is a countable dense subset of itself. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Normal Space
Normal(s) or The Normal(s) may refer to: Film and television * Normal (2003 film), ''Normal'' (2003 film), starring Jessica Lange and Tom Wilkinson * Normal (2007 film), ''Normal'' (2007 film), starring Carrie-Anne Moss, Kevin Zegers, Callum Keith Rennie, and Andrew Airlie * Normal (2009 film), ''Normal'' (2009 film), an adaptation of Anthony Neilson's 1991 play ''Normal: The Düsseldorf Ripper'' * ''Normal!'', a 2011 Algerian film * The Normals (film), ''The Normals'' (film), a 2012 American comedy film * Normal (New Girl), "Normal" (''New Girl''), an episode of the TV series Mathematics * Normal (geometry), an object such as a line or vector that is perpendicular to a given object * Normal basis (of a Galois extension), used heavily in cryptography * Normal bundle * Normal cone, of a subscheme in algebraic geometry * Normal coordinates, in differential geometry, local coordinates obtained from the exponential map (Riemannian geometry) * Normal distribution, the Gaussian continuo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Paracompact Space
In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by . Every compact space is paracompact. Every paracompact Hausdorff space is normal, and a Hausdorff space is paracompact if and only if it admits partitions of unity subordinate to any open cover. Sometimes paracompact spaces are defined so as to always be Hausdorff. Every closed subspace of a paracompact space is paracompact. While compact subsets of Hausdorff spaces are always closed, this is not true for paracompact subsets. A space such that every subspace of it is a paracompact space is called hereditarily paracompact. This is equivalent to requiring that every open subspace be paracompact. The notion of paracompact space is also studied in pointless topology, where it is more well-behaved. For example, the product of any number of paracompact locales is a paracompact locale, but the product of two paracomp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Schwartz Topological Vector Space
In functional analysis and related areas of mathematics, Schwartz spaces are topological vector spaces (TVS) whose neighborhoods of the origin have a property similar to the definition of totally bounded subsets. These spaces were introduced by Alexander Grothendieck. Definition A Hausdorff locally convex space with continuous dual X^, is called a Schwartz space if it satisfies any of the following equivalent conditions: #For every closed convex balanced neighborhood of the origin in , there exists a neighborhood of in such that for all real , can be covered by finitely many translates of . #Every bounded subset of is totally bounded and for every closed convex balanced neighborhood of the origin in , there exists a neighborhood of in such that for all real , there exists a bounded subset of such that . Properties Every quasi-complete Schwartz space is a semi-Montel space. Every Fréchet Schwartz space is a Montel space. The strong dual space of a co ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Reflexive Space
In the area of mathematics known as functional analysis, a reflexive space is a locally convex topological vector space for which the canonical evaluation map from X into its bidual (which is the strong dual of the strong dual of X) is a homeomorphism (or equivalently, a TVS isomorphism). A normed space is reflexive if and only if this canonical evaluation map is surjective, in which case this (always linear) evaluation map is an isometric isomorphism and the normed space is a Banach space. Those spaces for which the canonical evaluation map is surjective are called semi-reflexive spaces. In 1951, R. C. James discovered a Banach space, now known as James' space, that is reflexive (meaning that the canonical evaluation map is not an isomorphism) but is nevertheless isometrically isomorphic to its bidual (any such isometric isomorphism is necessarily the canonical evaluation map). So importantly, for a Banach space to be reflexive, it is not enough for it to be isometri ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inductive Limit
In mathematics, a direct limit is a way to construct a (typically large) object from many (typically smaller) objects that are put together in a specific way. These objects may be groups, rings, vector spaces or in general objects from any category. The way they are put together is specified by a system of homomorphisms (group homomorphism, ring homomorphism, or in general morphisms in the category) between those smaller objects. The direct limit of the objects A_i, where i ranges over some directed set I, is denoted by \varinjlim A_i . This notation suppresses the system of homomorphisms; however, the limit depends on the system of homomorphisms. Direct limits are a special case of the concept of colimit in category theory. Direct limits are dual to inverse limits, which are a special case of limits in category theory. Formal definition We will first give the definition for algebraic structures like groups and modules, and then the general definition, which can be used in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nuclear Space
In mathematics, nuclear spaces are topological vector spaces that can be viewed as a generalization of finite-dimensional Euclidean spaces and share many of their desirable properties. Nuclear spaces are however quite different from Hilbert spaces, another generalization of finite-dimensional Euclidean spaces. They were introduced by Alexander Grothendieck. The topology on nuclear spaces can be defined by a family of seminorms whose unit balls decrease rapidly in size. Vector spaces whose elements are "smooth" in some sense tend to be nuclear spaces; a typical example of a nuclear space is the set of smooth functions on a compact manifold. All finite-dimensional vector spaces are nuclear. There are no Banach spaces that are nuclear, except for the finite-dimensional ones. In practice a sort of converse to this is often true: if a "naturally occurring" topological vector space is a Banach space, then there is a good chance that it is nuclear. Original motivation: The Schwartz ker ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quasi-complete Space
In functional analysis, a topological vector space (TVS) is said to be quasi-complete or boundedly complete if every closed and bounded subset is complete. This concept is of considerable importance for non- metrizable TVSs. Properties * Every quasi-complete TVS is sequentially complete. * In a quasi-complete locally convex space, the closure of the convex hull of a compact subset is again compact. * In a quasi-complete Hausdorff TVS, every precompact subset is relatively compact. * If is a normed space and is a quasi-complete locally convex TVS then the set of all compact linear maps of into is a closed vector subspace of L_b(X;Y). * Every quasi-complete infrabarrelled space is barreled. * If is a quasi-complete locally convex space then every weakly bounded subset of the continuous dual space is strongly bounded. * A quasi-complete nuclear space then has the Heine–Borel property. Examples and sufficient conditions Every complete TVS is quasi-complete. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cartesian Product
In mathematics, specifically set theory, the Cartesian product of two sets and , denoted , is the set of all ordered pairs where is an element of and is an element of . In terms of set-builder notation, that is A\times B = \. A table can be created by taking the Cartesian product of a set of rows and a set of columns. If the Cartesian product is taken, the cells of the table contain ordered pairs of the form . One can similarly define the Cartesian product of sets, also known as an -fold Cartesian product, which can be represented by an -dimensional array, where each element is an -tuple. An ordered pair is a 2-tuple or couple. More generally still, one can define the Cartesian product of an indexed family of sets. The Cartesian product is named after René Descartes, whose formulation of analytic geometry gave rise to the concept, which is further generalized in terms of direct product. Set-theoretic definition A rigorous definition of the Cartesian product re ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inverse Limit
In mathematics, the inverse limit (also called the projective limit) is a construction that allows one to "glue together" several related objects, the precise gluing process being specified by morphisms between the objects. Thus, inverse limits can be defined in any category although their existence depends on the category that is considered. They are a special case of the concept of limit in category theory. By working in the dual category, that is by reversing the arrows, an inverse limit becomes a direct limit or ''inductive limit'', and a ''limit'' becomes a colimit. Formal definition Algebraic objects We start with the definition of an inverse system (or projective system) of groups and homomorphisms. Let (I, \leq) be a directed poset (not all authors require ''I'' to be directed). Let (''A''''i'')''i''∈''I'' be a family of groups and suppose we have a family of homomorphisms f_: A_j \to A_i for all i \leq j (note the order) with the following properties: # f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Direct Sum
The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently but analogously for different kinds of structures. As an example, the direct sum of two abelian groups A and B is another abelian group A\oplus B consisting of the ordered pairs (a,b) where a \in A and b \in B. To add ordered pairs, the sum is defined (a, b) + (c, d) to be (a + c, b + d); in other words, addition is defined coordinate-wise. For example, the direct sum \Reals \oplus \Reals , where \Reals is real coordinate space, is the Cartesian plane, \R ^2 . A similar process can be used to form the direct sum of two vector spaces or two modules. Direct sums can also be formed with any finite number of summands; for example, A \oplus B \oplus C, provided A, B, and C are the same kinds of algebraic structures (e.g., all abelian groups, or all vector spaces). That relies on the fact that the direct sum is associative up to isomorphism. That is, (A ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |