HOME





Mixed Radix
Mixed radix numeral systems are non-standard positional numeral systems in which the numerical base varies from position to position. Such numerical representation applies when a quantity is expressed using a sequence of units that are each a multiple of the next smaller one, but not by the same factor. Such units are common for instance in measuring time; a time of 32 weeks, 5 days, 7 hours, 45 minutes, 15 seconds, and 500 milliseconds might be expressed as a number of minutes in mixed-radix notation as: ... 32, 5, 07, 45; 15, 500 ... ∞, 7, 24, 60; 60, 1000 or as :32∞5707244560.15605001000 In the tabular format, the digits are written above their base, and a semicolon indicates the radix point. In numeral format, each digit has its associated base attached as a subscript, and the radix point is marked by a full stop or period. The base for each digit is the number of corresponding units that make up the next larger unit. As a consequence there is no base (written a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Numeral System
A numeral system is a writing system for expressing numbers; that is, a mathematical notation for representing numbers of a given set, using digits or other symbols in a consistent manner. The same sequence of symbols may represent different numbers in different numeral systems. For example, "11" represents the number ''eleven'' in the decimal or base-10 numeral system (today, the most common system globally), the number ''three'' in the binary or base-2 numeral system (used in modern computers), and the number ''two'' in the unary numeral system (used in tallying scores). The number the numeral represents is called its ''value''. Additionally, not all number systems can represent the same set of numbers; for example, Roman, Greek, and Egyptian numerals don't have a representation of the number zero. Ideally, a numeral system will: *Represent a useful set of numbers (e.g. all integers, or rational numbers) *Give every number represented a unique representation (or a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Octodecimal
There are many different numeral systems, that is, writing systems for expressing numbers. By culture / time period "A ''base'' is a natural number B whose ''powers'' (B multiplied by itself some number of times) are specially designated within a numerical system." The term is not equivalent to radix, as it applies to all numerical notation systems (not just positional ones with a radix) and most systems of spoken numbers. Some systems have two bases, a smaller (subbase) and a larger (base); an example is Roman numerals, which are organized by fives (V=5, L=50, D=500, the subbase) and tens (X=10, C=100, M=1,000, the base). By type of notation Numeral systems are classified here as to whether they use positional notation (also known as place-value notation), and further categorized by radix or base. Standard positional numeral systems The common names are derived Hexadecimal#Etymology, somewhat arbitrarily from a mix of Latin and Greek language, Greek, in some cases incl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Richard K
Richard is a male given name. It originates, via Old French, from Old Frankish and is a compound of the words descending from Proto-Germanic language">Proto-Germanic ''*rīk-'' 'ruler, leader, king' and ''*hardu-'' 'strong, brave, hardy', and it therefore means 'strong in rule'. Nicknames include "Richie", " Dick", " Dickon", " Dickie", " Rich", " Rick", "Rico (name), Rico", " Ricky", and more. Richard is a common English (the name was introduced into England by the Normans), German and French male name. It's also used in many more languages, particularly Germanic, such as Norwegian, Danish, Swedish, Icelandic, and Dutch, as well as other languages including Irish, Scottish, Welsh and Finnish. Richard is cognate with variants of the name in other European languages, such as the Swedish "Rickard", the Portuguese and Spanish "Ricardo" and the Italian "Riccardo" (see comprehensive variant list below). People named Richard Multiple people with the same name * Richard Anders ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Subbayya Sivasankaranarayana Pillai
Subbayya Sivasankaranarayana Pillai (5 April 1901 – 31 August 1950) was an Indian mathematician specialising in number theory. His contribution to Waring's problem was described in 1950 by K. S. Chandrasekharan as "almost certainly his best piece of work and one of the very best achievements in Indian Mathematics since Ramanujan". Biography Subbayya Sivasankaranarayana Pillai was born to parents Subbayya Pillai and Gomati Ammal. His mother died a year after his birth and his father when Pillai was in his last year at school. Pillai did his intermediate course and B.Sc. Mathematics in the Scott Christian College at Nagercoil and managed to earn a B.A. degree from Maharaja's college, Trivandrum. In 1927, Pillai was awarded a research fellowship at the University of Madras to work among professors K. Ananda Rau and Ramaswamy S. Vaidyanathaswamy. He was from 1929 to 1941 at Annamalai University where he worked as a lecturer. It was in Annamalai University that he did his ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Primorial
In mathematics, and more particularly in number theory, primorial, denoted by "", is a function from natural numbers to natural numbers similar to the factorial function, but rather than successively multiplying positive integers, the function only multiplies prime numbers. The name "primorial", coined by Harvey Dubner, draws an analogy to ''primes'' similar to the way the name "factorial" relates to ''factors''. Definition for prime numbers For the th prime number , the primorial is defined as the product of the first primes: :p_n\# = \prod_^n p_k, where is the th prime number. For instance, signifies the product of the first 5 primes: :p_5\# = 2 \times 3 \times 5 \times 7 \times 11= 2310. The first few primorials are: : 1, 2, 6, 30, 210, 2310, 30030, 510510, 9699690... . Asymptotically, primorials grow according to: :p_n\# = e^, where is Little O notation. Definition for natural numbers In general, for a positive integer , its primorial, , is th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Induction
Mathematical induction is a method for mathematical proof, proving that a statement P(n) is true for every natural number n, that is, that the infinitely many cases P(0), P(1), P(2), P(3), \dots  all hold. This is done by first proving a simple case, then also showing that if we assume the claim is true for a given case, then the next case is also true. Informal metaphors help to explain this technique, such as falling dominoes or climbing a ladder: A proof by induction consists of two cases. The first, the base case, proves the statement for n = 0 without assuming any knowledge of other cases. The second case, the induction step, proves that ''if'' the statement holds for any given case n = k, ''then'' it must also hold for the next case n = k + 1. These two steps establish that the statement holds for every natural number n. The base case does not necessarily begin with n = 0, but often with n = 1, and possibly with any fixed natural number n = N, establishing the trut ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Permutations
In mathematics, a permutation of a Set (mathematics), set can mean one of two different things: * an arrangement of its members in a sequence or linear order, or * the act or process of changing the linear order of an ordered set. An example of the first meaning is the six permutations (orderings) of the set : written as tuples, they are (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1). Anagrams of a word whose letters are all different are also permutations: the letters are already ordered in the original word, and the anagram reorders them. The study of permutations of finite sets is an important topic in combinatorics and group theory. Permutations are used in almost every branch of mathematics and in many other fields of science. In computer science, they are used for analyzing sorting algorithms; in quantum physics, for describing states of particles; and in biology, for describing RNA sequences. The number of permutations of distinct objects is &nbs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Permutation
In mathematics, a permutation of a set can mean one of two different things: * an arrangement of its members in a sequence or linear order, or * the act or process of changing the linear order of an ordered set. An example of the first meaning is the six permutations (orderings) of the set : written as tuples, they are (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1). Anagrams of a word whose letters are all different are also permutations: the letters are already ordered in the original word, and the anagram reorders them. The study of permutations of finite sets is an important topic in combinatorics and group theory. Permutations are used in almost every branch of mathematics and in many other fields of science. In computer science, they are used for analyzing sorting algorithms; in quantum physics, for describing states of particles; and in biology, for describing RNA sequences. The number of permutations of distinct objects is  factorial, us ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Factorial
In mathematics, the factorial of a non-negative denoted is the Product (mathematics), product of all positive integers less than or equal The factorial also equals the product of n with the next smaller factorial: \begin n! &= n \times (n-1) \times (n-2) \times (n-3) \times \cdots \times 3 \times 2 \times 1 \\ &= n\times(n-1)!\\ \end For example, 5! = 5\times 4! = 5 \times 4 \times 3 \times 2 \times 1 = 120. The value of 0! is 1, according to the convention for an empty product. Factorials have been discovered in several ancient cultures, notably in Indian mathematics in the canonical works of Jain literature, and by Jewish mystics in the Talmudic book ''Sefer Yetzirah''. The factorial operation is encountered in many areas of mathematics, notably in combinatorics, where its most basic use counts the possible distinct sequences – the permutations – of n distinct objects: there In mathematical analysis, factorials are used in power series for the ex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

J Programming Language
The J programming language, developed in the early 1990s by Kenneth E. Iverson and Roger Hui, is an array programming language based primarily on APL (also by Iverson). To avoid repeating the APL special-character problem, J uses only the basic ASCII character set, resorting to the use of the dot and colon as ''inflections'' to form short words similar to '' digraphs''. Most such ''primary'' (or ''primitive'') J words serve as mathematical symbols, with the dot or colon extending the meaning of the basic characters available. Also, many characters which in other languages often must be paired (such as [] "" `` or ) are treated by J as stand-alone words or, when inflected, as single-character roots of multi-character words. J is a very terse array programming language, and is most suited to mathematical and statistical programming, especially when performing operations on matrices. It has also been used in extreme programming and network performance analysis. Like John ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

APL Programming Language
APL (named after the book ''A Programming Language'') is a programming language developed in the 1960s by Kenneth E. Iverson. Its central datatype is the multidimensional array. It uses a large range of special graphic symbols to represent most functions and operators, leading to very concise code. It has been an important influence on the development of concept modeling, spreadsheets, functional programming, and computer math packages. It has also inspired several other programming languages. History Mathematical notation A mathematical notation for manipulating arrays was developed by Kenneth E. Iverson, starting in 1957 at Harvard University. In 1960, he began work for IBM where he developed this notation with Adin Falkoff and published it in his book ''A Programming Language'' in 1962. The preface states its premise: This notation was used inside IBM for short research reports on computer systems, such as the Burroughs B5000 and its stack mechanism when stack mach ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cooley–Tukey FFT Algorithm
The Cooley–Tukey algorithm, named after James Cooley, J. W. Cooley and John Tukey, is the most common fast Fourier transform (FFT) algorithm. It re-expresses the discrete Fourier transform (DFT) of an arbitrary composite number, composite size N = N_1N_2 in terms of ''N''1 smaller DFTs of sizes ''N''2, recursion, recursively, to reduce the computation time to O(''N'' log ''N'') for highly composite ''N'' (smooth numbers). Because of the algorithm's importance, specific variants and implementation styles have become known by their own names, as described below. Because the Cooley–Tukey algorithm breaks the DFT into smaller DFTs, it can be combined arbitrarily with any other algorithm for the DFT. For example, Rader's FFT algorithm, Rader's or Bluestein's FFT algorithm, Bluestein's algorithm can be used to handle large prime factors that cannot be decomposed by Cooley–Tukey, or the prime-factor FFT algorithm, prime-factor algorithm can be exploited for greater efficiency in s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]