HOME
*





Minlos's Theorem
In the mathematics of topological vector spaces, Minlos's theorem states that a cylindrical measure on the dual of a nuclear space is a Radon measure if its Fourier transform is continuous. It is named after Robert Adol'fovich Minlos and can be proved using Sazonov's theorem In mathematics, Sazonov's theorem, named after Vyacheslav Vasilievich Sazonov (), is a theorem in functional analysis. It states that a bounded linear operator between two Hilbert spaces is ''γ''-radonifying if it is a Hilbert–Schmidt o .... References * * Theorems in functional analysis Theorems regarding stochastic processes {{mathanalysis-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting poin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Vector Space
In mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations (vector addition and scalar multiplication) are also continuous functions. Such a topology is called a and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space (although this article does not). One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs. Many topological vector spaces are spaces of functions, or linear operators acting on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cylindrical Measure
In mathematics, cylinder set measure (or promeasure, or premeasure, or quasi-measure, or CSM) is a kind of prototype for a Measure (mathematics), measure on an infinite-dimensional vector space. An example is the Gaussian cylinder set measure on Hilbert space. Cylinder set measures are in general not measures (and in particular need not be Sigma additivity, countably additive but only Sigma additivity, finitely additive), but can be used to define measures, such as Classical Wiener space#Classical Wiener measure, classical Wiener measure on the set of continuous paths starting at the origin in Euclidean space. Definition Let E be a Separable space, separable Real number, real topological vector space. Let \mathcal (E) denote the collection of all Surjection, surjective continuous linear maps T : E \to F_T defined on E whose image is some finite-dimensional real vector space F_T: \mathcal (E) := \left\. A cylinder set measure on E is a collection of probability measures \left\. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nuclear Space
In mathematics, nuclear spaces are topological vector spaces that can be viewed as a generalization of finite dimensional Euclidean spaces and share many of their desirable properties. Nuclear spaces are however quite different from Hilbert spaces, another generalization of finite dimensional Euclidean spaces. They were introduced by Alexander Grothendieck. The topology on nuclear spaces can be defined by a family of seminorms whose unit balls decrease rapidly in size. Vector spaces whose elements are "smooth" in some sense tend to be nuclear spaces; a typical example of a nuclear space is the set of smooth functions on a compact manifold. All finite-dimensional vector spaces are nuclear. There are no Banach spaces that are nuclear, except for the finite-dimensional ones. In practice a sort of converse to this is often true: if a "naturally occurring" topological vector space is a Banach space, then there is a good chance that it is nuclear. Original motivation: The Schwartz ke ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Radon Measure
In mathematics (specifically in measure theory), a Radon measure, named after Johann Radon, is a measure on the σ-algebra of Borel sets of a Hausdorff topological space ''X'' that is finite on all compact sets, outer regular on all Borel sets, and inner regular on open sets. These conditions guarantee that the measure is "compatible" with the topology of the space, and most measures used in mathematical analysis and in number theory are indeed Radon measures. Motivation A common problem is to find a good notion of a measure on a topological space that is compatible with the topology in some sense. One way to do this is to define a measure on the Borel sets of the topological space. In general there are several problems with this: for example, such a measure may not have a well defined support. Another approach to measure theory is to restrict to locally compact Hausdorff spaces, and only consider the measures that correspond to positive linear functionals on t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fourier Transform
A Fourier transform (FT) is a mathematical transform that decomposes functions into frequency components, which are represented by the output of the transform as a function of frequency. Most commonly functions of time or space are transformed, which will output a function depending on temporal frequency or spatial frequency respectively. That process is also called ''analysis''. An example application would be decomposing the waveform of a musical chord into terms of the intensity of its constituent pitches. The term ''Fourier transform'' refers to both the frequency domain representation and the mathematical operation that associates the frequency domain representation to a function of space or time. The Fourier transform of a function is a complex-valued function representing the complex sinusoids that comprise the original function. For each frequency, the magnitude ( absolute value) of the complex value represents the amplitude of a constituent complex sinusoid wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Robert Adol'fovich Minlos
Robert Adol'fovich Minlos (russian: Роберт Адольфович Минлос; 28 February 1931 – 9 January 2018) was a Soviet and Russian mathematician who has made important contributions to probability theory and mathematical physics. His theorem on the extension of cylindrical measures to Radon measures on the continuous dual of a nuclear space is of fundamental importance in the theory of generalized random process A generalization is a form of abstraction whereby common properties of specific instances are formulated as general concepts or claims. Generalizations posit the existence of a domain or set of elements, as well as one or more common character ...es. He died on 9 January 2018 at the age of 86.In memoriam. Роберт Адольфович Минлос (28.02.1931 – ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sazonov's Theorem
In mathematics, Sazonov's theorem, named after Vyacheslav Vasilievich Sazonov (), is a theorem in functional analysis. It states that a bounded linear operator between two Hilbert spaces is ''γ''-radonifying if it is a Hilbert–Schmidt operator. The result is also important in the study of stochastic processes and the Malliavin calculus, since results concerning probability measures on infinite-dimensional spaces are of central importance in these fields. Sazonov's theorem also has a converse: if the map is not Hilbert–Schmidt, then it is not ''γ''-radonifying. Statement of the theorem Let ''G'' and ''H'' be two Hilbert spaces and let ''T'' : ''G'' → ''H'' be a bounded operator from ''G'' to ''H''. Recall that ''T'' is said to be ''γ''-radonifying if the push forward of the canonical Gaussian cylinder set measure on ''G'' is a ''bona fide'' measure on ''H''. Recall also that ''T'' is said to be a Hilbert–Schmidt operator if there is an orthonormal basis of ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theorems In Functional Analysis
In mathematics, a theorem is a statement (logic), statement that has been Mathematical proof, proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In the mainstream of mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice, or of a less powerful theory, such as Peano arithmetic. A notable exception is Wiles's proof of Fermat's Last Theorem, which involves the Grothendieck universes whose existence requires the addition of a new axiom to the set theory. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the te ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]