Methanomethylovorans Hollandica
Methanomethylovorans hollandica is a species of methylotrophic methanogen able to grow on dimethyl sulfide and methanethiol. It is the type species of its genus. It is obligately anaerobic. It was the first strictly anaerobic archeaon isolated from freshwater sediments in which dimethyl sulfide is the sole source of carbon. It is not a halophile The halophiles, named after the Greek word for "salt-loving", are extremophiles that thrive in high salt concentrations. While most halophiles are classified into the domain Archaea, there are also bacterial halophiles and some eukaryotic species, .... It can use methyl compounds as substrates, but it cannot use carbon dioxide or acetate. Because dimethyl sulfide has implications with respect to global warming, this organism may be of considerable importance. References Further reading * External links * LPSN [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Archaea
Archaea ( ; singular archaeon ) is a domain of single-celled organisms. These microorganisms lack cell nuclei and are therefore prokaryotes. Archaea were initially classified as bacteria, receiving the name archaebacteria (in the Archaebacteria kingdom), but this term has fallen out of use. Archaeal cells have unique properties separating them from the other two domains, Bacteria and Eukaryota. Archaea are further divided into multiple recognized phyla. Classification is difficult because most have not been isolated in a laboratory and have been detected only by their gene sequences in environmental samples. Archaea and bacteria are generally similar in size and shape, although a few archaea have very different shapes, such as the flat, square cells of '' Haloquadratum walsbyi''. Despite this morphological similarity to bacteria, archaea possess genes and several metabolic pathways that are more closely related to those of eukaryotes, notably for the enzymes invo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Euryarchaeota
Euryarchaeota (from Ancient Greek ''εὐρύς'' eurús, "broad, wide") is a phylum of archaea. Euryarchaeota are highly diverse and include methanogens, which produce methane and are often found in intestines, halobacteria, which survive extreme concentrations of salt, and some extremely thermophilic aerobes and anaerobes, which generally live at temperatures between 41 and 122 °C. They are separated from the other archaeans based mainly on rRNA sequences and their unique DNA polymerase. Description The ''Euryarchaeota'' are diverse in appearance and metabolic properties. The phylum contains organisms of a variety of shapes, including both rods and cocci. ''Euryarchaeota'' may appear either gram-positive or gram-negative depending on whether pseudomurein is present in the cell wall. ''Euryarchaeota'' also demonstrate diverse lifestyles, including methanogens, halophiles, sulfate-reducers, and extreme thermophiles in each. Others live in the ocean, suspended with ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Methanomicrobia
In the taxonomy of microorganisms, the Methanomicrobia are a class of the Euryarchaeota. Phylogeny The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN) and National Center for Biotechnology Information (NCBI). See also * List of Archaea genera This article lists the genera of the Archaea. The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN) and National Center for Biotechnology Information (NCBI). Phylogeny National Center for ... Further reading Scientific journals * * Scientific books * * Scientific databases External links References Archaea classes Euryarchaeota {{Euryarchaeota-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Methanosarcinales
In taxonomy, the Methanosarcinales are an order of the Methanomicrobia. Large amounts of methane are produced in marine sediments but are then consumed before contacting aerobic waters or the atmosphere. Although no organism that can consume methane anaerobically has ever been isolated, biogeochemical evidence indicates that the overall process involves a transfer of electrons from methane to sulphate and is probably mediated by several organisms, including a methanogen (operating in reverse) and a sulfate-reducer (using an unknown intermediate substrate). Organisms placed within the order can be found in freshwater, saltwater, salt-rich sediments, laboratory digestors, and animal digestive systems. Most cells have cell walls that lack peptidoglycan and pseudomurein. They are strictly anaerobic and survive by producing methane. Some species use acetate as a substrate and others use methyl compounds, such as methyl amines and methyl sulfates. Phylogeny See also * List of Arc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Methanosarcinaceae
In taxonomy, the Methanosarcinaceae are a family of the Methanosarcinales. Phylogeny The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN) and National Center for Biotechnology Information (NCBI) Biochemistry A notable trait of Methanosarcinaceae is that they are methanogens that incorporate the unusual amino acid pyrrolysine into their enzymes.Lehninger A, Nelson D, Cox M. Lehninger principles of biochemistry. 6th ed. New York: W.H. Freeman; 2013 p. 1124-1126. The enzyme monomethylamine methyltransferase catalyzes the reaction of monomethylamine to methane. This enzyme includes pyrrolysine. The unusual amino acid is inserted using a unique tRNA, the anticodon of which is UAG. In most organisms, and in most Methanosarcinaceae proteins, UAG is a stop codon. However in this enzyme, and anywhere else pyrrolysine is incorporated, likely through contextual markers on the mRNA, the pyrrolysine-loaded tRNA is inserted instead ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Methanomethylovorans
In taxonomy, ''Methanomethylovorans'' is a genus of microorganisms with the family Methanosarcinaceae. This genus was first described in 1999. The species within it generally live in freshwater environments, including rice paddies, freshwater sediments and contaminated soil. They produce methane from methanol, methylamines, dimethyl sulfide and methanethiol. With the exception of ''M. thermophila'', which has an optimal growth temperature of 50 °C, these species are mesophile A mesophile is an organism that grows best in moderate temperature, neither too hot nor too cold, with an optimum growth range from . The optimum growth temperature for these organisms is 37°C. The term is mainly applied to microorganisms. Organi ...s and do not tend to grow at temperatures above 40 °C. References Further reading Scientific journals * * * * * Scientific books Scientific databases External links Archaea genera Euryarchaeota {{Euryarchaeota-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Methylotrophic
Methylotrophs are a diverse group of microorganisms that can use reduced one-carbon compounds, such as methanol or methane, as the carbon source for their growth; and multi-carbon compounds that contain no carbon-carbon bonds, such as dimethyl ether and dimethylamine. This group of microorganisms also includes those capable of assimilating reduced one-carbon compounds by way of carbon dioxide using the ribulose bisphosphate pathway. These organisms should not be confused with methanogens which on the contrary produce methane as a by-product from various one-carbon compounds such as carbon dioxide. Some methylotrophs can degrade the greenhouse gas methane, and in this case they are called methanotrophs. The abundance, purity, and low price of methanol compared to commonly used sugars make methylotrophs competent organisms for production of amino acids, vitamins, recombinant proteins, single-cell proteins, co-enzymes and cytochromes. Metabolism The key intermediate in methylot ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Methanogen
Methanogens are microorganisms that produce methane as a metabolic byproduct in hypoxic conditions. They are prokaryotic and belong to the domain Archaea. All known methanogens are members of the archaeal phylum Euryarchaeota. Methanogens are common in wetlands, where they are responsible for marsh gas, and in the digestive tracts of animals such as ruminants and many humans, where they are responsible for the methane content of belching in ruminants and flatulence in humans. In marine sediments, the biological production of methane, also termed methanogenesis, is generally confined to where sulfates are depleted, below the top layers. Moreover, methanogenic archaea populations play an indispensable role in anaerobic wastewater treatments. Others are extremophiles, found in environments such as hot springs and submarine hydrothermal vents as well as in the "solid" rock of Earth's crust, kilometers below the surface. Physical description Methanogens are coccoid (sph ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dimethyl Sulfide
Dimethyl sulfide (DMS) or methylthiomethane is an organosulfur compound with the formula (CH3)2S. Dimethyl sulfide is a flammable liquid that boils at and has a characteristic disagreeable odor. It is a component of the smell produced from cooking of certain vegetables, notably maize, cabbage, beetroot, and seafoods. It is also an indication of bacterial contamination in malt production and brewing. It is a breakdown product of dimethylsulfoniopropionate (DMSP), and is also produced by the bacterial metabolism of methanethiol. Occurrence and production DMS originates primarily from DMSP, a major secondary metabolite in some marine algae. DMS is the most abundant biological sulfur compound emitted to the atmosphere. Emission occurs over the oceans by phytoplankton. DMS is also produced naturally by bacterial transformation of dimethyl sulfoxide (DMSO) waste that is disposed of into sewers, where it can cause environmental odor problems. DMS is oxidized in the marine atm ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Methanethiol
Methanethiol (also known as methyl mercaptan) is an organosulfur compound with the chemical formula . It is a colorless gas with a distinctive putrid smell. It is a natural substance found in the blood, brain and feces of animals (including humans), as well as in plant tissues. It also occurs naturally in certain foods, such as some nuts and cheese. It is one of the chemical compounds responsible for bad breath and the smell of flatus. Methanethiol is the simplest thiol and is sometimes abbreviated as MeSH. It is very flammable. Structure and reactions The molecule is tetrahedral at the carbon atom, like methanol. It is a weak acid, with a p''K''a of ~10.4, but is about a hundred thousand times more acidic than methanol. The colorless salt can be obtained in this way: :CH3SH + CH3ONa → CH3SNa + CH3OH The resulting thiolate anion is a strong nucleophile. It can be oxidized to dimethyl disulfide: :2CH3SH + → CH3SSCH3 + H2O Further oxidation takes the disulfide to tw ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Applied And Environmental Microbiology
''Applied and Environmental Microbiology'' is a biweekly peer-reviewed scientific journal published by the American Society for Microbiology. It was established in 1953 as ''Applied Microbiology'' and obtained its current name in 1975. Articles older than six months are available free of cost from the website, however, the newly published articles within six months are available to subscribers only. According to the '' Journal Citation Reports'', the journal has a 2021 impact factor of 5.005. The journal has been ranked as one of the top 100 journals over the past 100 years in the fields of biology and medicine. Special Libraries Association100 Journals in last 100 years/ref> The editor-in-chief An editor-in-chief (EIC), also known as lead editor or chief editor, is a publication's editorial leader who has final responsibility for its operations and policies. The highest-ranking editor of a publication may also be titled editor, managing ... is Gemma Reguera ( Michigan State U ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Anaerobic Organism
An anaerobic organism or anaerobe is any organism that does not require molecular oxygen for growth. It may react negatively or even die if free oxygen is present. In contrast, an aerobic organism (aerobe) is an organism that requires an oxygenated environment. Anaerobes may be unicellular (e.g. protozoans, bacteria) or multicellular. Most fungi are obligate aerobes, requiring oxygen to survive. However, some species, such as the Chytridiomycota that reside in the rumen of cattle, are obligate anaerobes; for these species, anaerobic respiration is used because oxygen will disrupt their metabolism or kill them. Deep waters of the ocean are a common anoxic environment. First observation In his letter of 14 June 1680 to The Royal Society, Antonie van Leeuwenhoek described an experiment he carried out by filling two identical glass tubes about halfway with crushed pepper powder, to which some clean rain water was added. Van Leeuwenhoek sealed one of the glass tubes using a flam ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |