Metaplectic Group
In mathematics, the metaplectic group Mp2''n'' is a double cover of the symplectic group Sp2''n''. It can be defined over either real or ''p''-adic numbers. The construction covers more generally the case of an arbitrary local or finite field, and even the ring of adeles. The metaplectic group has a particularly significant infinite-dimensional linear representation, the Weil representation. It was used by André Weil to give a representation-theoretic interpretation of theta functions, and is important in the theory of modular forms of half-integral weight and the theta correspondence. Definition The fundamental group of the symplectic Lie group Sp2n(R) is infinite cyclic, so it has a unique connected double cover, which is denoted Mp2''n''(R) and called the metaplectic group. The metaplectic group Mp2(R) is ''not'' a matrix group: it has no faithful finite-dimensional representations. Therefore, the question of its explicit realization is nontrivial. It has faithful ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Faithful Representation
In mathematics, especially in an area of abstract algebra known as representation theory, a faithful representation ρ of a group (mathematics), group on a vector space is a linear representation in which different elements of are represented by distinct linear mappings . In more abstract language, this means that the group homomorphism \rho: G\to GL(V) is injective (or injective, one-to-one). Caveat While representations of over a field (mathematics), field are ''de facto'' the same as -module (mathematics), modules (with denoting the Group ring#Group algebra over a finite group, group algebra of the group ), a faithful representation of is not necessarily a faithful module for the group algebra. In fact each faithful -module is a faithful representation of , but the converse (logic), converse does not hold. Consider for example the natural representation of the symmetric group in dimensions by permutation matrices, which is certainly faithful. Here the order of a group, o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Heisenberg Group
In mathematics, the Heisenberg group H, named after Werner Heisenberg, is the group of 3×3 upper triangular matrices of the form : \begin 1 & a & c\\ 0 & 1 & b\\ 0 & 0 & 1\\ \end under the operation of matrix multiplication. Elements ''a, b'' and ''c'' can be taken from any commutative ring with identity, often taken to be the ring of real numbers (resulting in the "continuous Heisenberg group") or the ring of integers (resulting in the "discrete Heisenberg group"). The continuous Heisenberg group arises in the description of one-dimensional quantum mechanical systems, especially in the context of the Stone–von Neumann theorem. More generally, one can consider Heisenberg groups associated to ''n''-dimensional systems, and most generally, to any symplectic vector space. Three-dimensional case In the three-dimensional case, the product of two Heisenberg matrices is given by : \begin 1 & a & c\\ 0 & 1 & b\\ 0 & 0 & 1\\ \end \begin 1 & a' & c'\\ 0 & 1 & b'\\ 0 & 0 & ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Surjection
In mathematics, a surjective function (also known as surjection, or onto function ) is a function such that, for every element of the function's codomain, there exists one element in the function's domain such that . In other words, for a function , the codomain is the image of the function's domain . It is not required that be unique; the function may map one or more elements of to the same element of . The term ''surjective'' and the related terms ''injective'' and ''bijective'' were introduced by Nicolas Bourbaki, a group of mainly French 20th-century mathematicians who, under this pseudonym, wrote a series of books presenting an exposition of modern advanced mathematics, beginning in 1935. The French word '' sur'' means ''over'' or ''above'', and relates to the fact that the image of the domain of a surjective function completely covers the function's codomain. Any function induces a surjection by restricting its codomain to the image of its domain. Every surject ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Determinant
In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the matrix and the linear map represented, on a given basis (linear algebra), basis, by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible matrix, invertible and the corresponding linear map is an linear isomorphism, isomorphism. However, if the determinant is zero, the matrix is referred to as singular, meaning it does not have an inverse. The determinant is completely determined by the two following properties: the determinant of a product of matrices is the product of their determinants, and the determinant of a triangular matrix is the product of its diagonal entries. The determinant of a matrix is :\begin a & b\\c & d \end=ad-bc, and the determinant of a matrix is : \begin a & b & c \\ d & e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Möbius Transformation
In geometry and complex analysis, a Möbius transformation of the complex plane is a rational function of the form f(z) = \frac of one complex number, complex variable ; here the coefficients , , , are complex numbers satisfying . Geometrically, a Möbius transformation can be obtained by first applying the inverse stereographic projection from the plane to the unit sphere, moving and rotating the sphere to a new location and orientation in space, and then applying a stereographic projection to map from the sphere back to the plane. These transformations preserve angles, map every straight line to a line or circle, and map every circle to a line or circle. The Möbius transformations are the projective transformations of the complex projective line. They form a group (mathematics), group called the Möbius group, which is the projective linear group . Together with its subgroups, it has numerous applications in mathematics and physics. Möbius geometry, Möbius geometries and t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Upper Half-plane
In mathematics, the upper half-plane, is the set of points in the Cartesian plane with The lower half-plane is the set of points with instead. Arbitrary oriented half-planes can be obtained via a planar rotation. Half-planes are an example of two-dimensional half-space. A half-plane can be split in two quadrants. Affine geometry The affine transformations of the upper half-plane include # shifts (x,y)\mapsto (x+c,y), c\in\mathbb, and # dilations (x,y)\mapsto (\lambda x,\lambda y), \lambda > 0. Proposition: Let and be semicircles in the upper half-plane with centers on the boundary. Then there is an affine mapping that takes A to B. :Proof: First shift the center of to Then take \lambda=(\text\ B)/(\text\ A) and dilate. Then shift to the center of Inversive geometry Definition: \mathcal := \left\ . can be recognized as the circle of radius centered at and as the polar plot of \rho(\theta) = \cos \theta. Proposition: in and are collinear points. In ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
SL2(R)
In mathematics, the special linear group SL(2, R) or SL2(R) is the group of 2 × 2 real matrices with determinant one: : \mbox(2,\mathbf) = \left\. It is a connected non-compact simple real Lie group of dimension 3 with applications in geometry, topology, representation theory, and physics. SL(2, R) acts on the complex upper half-plane by fractional linear transformations. The group action factors through the quotient PSL(2, R) (the 2 × 2 projective special linear group over R). More specifically, :PSL(2, R) = SL(2, R) / , where ''I'' denotes the 2 × 2 identity matrix. It contains the modular group PSL(2, Z). Also closely related is the 2-fold covering group, Mp(2, R), a metaplectic group (thinking of SL(2, R) as a symplectic group). Another related group is SL±(2, R), the group of real 2 × 2 matrices with determinant ±1; this ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Special Linear Group
In mathematics, the special linear group \operatorname(n,R) of degree n over a commutative ring R is the set of n\times n Matrix (mathematics), matrices with determinant 1, with the group operations of ordinary matrix multiplication and matrix inversion. This is the normal subgroup of the general linear group given by the kernel (algebra), kernel of the determinant :\det\colon \operatorname(n, R) \to R^\times. where R^\times is the multiplicative group of R (that is, R excluding 0 when R is a field). These elements are "special" in that they form an Algebraic variety, algebraic subvariety of the general linear group – they satisfy a polynomial equation (since the determinant is polynomial in the entries). When R is the finite field of order q, the notation \operatorname(n,q) is sometimes used. Geometric interpretation The special linear group \operatorname(n,\R) can be characterized as the group of ''volume and orientation (mathematics), orientation preserving'' linear tra ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cocycle (algebraic Topology)
In mathematics a cocycle is a closed cochain (algebraic topology), cochain. Cocycles are used in algebraic topology to express obstructions (for example, to integrating a differential equation on a closed manifold). They are likewise used in group cohomology. In autonomous system (mathematics), autonomous dynamical systems, cocycles are used to describe particular kinds of map, as in Oseledets theorem. Definition Algebraic Topology Let ''X'' be a CW complex and C^n(X) be the singular Chain complex, cochains with coboundary map d^n: C^(X) \to C^n(X). Then elements of \textd are cocycles. Elements of \text d are coboundaries. If \varphi is a cocycle, then d \circ \varphi = \varphi \circ \partial =0 , which means cocycles vanish on boundaries. See also * Čech cohomology * Cocycle condition References Algebraic topology Cohomology theories Dynamical systems {{topology-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Topology
Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such as Stretch factor, stretching, Torsion (mechanics), twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a Set (mathematics), set endowed with a structure, called a ''Topology (structure), topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of List of continuity-related mathematical topics, continuity. Euclidean spaces, and, more generally, metric spaces are examples of topological spaces, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and Homotopy, homotopies. A property that is invariant under such deformations is a to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Order (group Theory)
In mathematics, the order of a finite group is the number of its elements. If a group is not finite, one says that its order is ''infinite''. The ''order'' of an element of a group (also called period length or period) is the order of the subgroup generated by the element. If the group operation is denoted as a multiplication, the order of an element of a group, is thus the smallest positive integer such that , where denotes the identity element of the group, and denotes the product of copies of . If no such exists, the order of is infinite. The order of a group is denoted by or , and the order of an element is denoted by or , instead of \operatorname(\langle a\rangle), where the brackets denote the generated group. Lagrange's theorem states that for any subgroup of a finite group , the order of the subgroup divides the order of the group; that is, is a divisor of . In particular, the order of any element is a divisor of . Example The symmetric group S3 ha ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |