HOME





McLaughlin Graph
In the mathematical field of graph theory, the McLaughlin graph is a strongly regular graph with parameters (275,112,30,56), and is the only such graph. The group theorist Jack McLaughlin discovered that the automorphism group of this graph had a subgroup of index 2 which was a previously undiscovered finite simple group, now called the McLaughlin sporadic group. The automorphism group has rank 3, meaning that its point stabilizer subgroup divides the remaining 274 vertices into two orbits. Those orbits contain 112 and 162 vertices. The former is the colinearity graph of the generalized quadrangle GQ(3,9). The latter is a strongly regular graph called the local McLaughlin graph In the mathematical field of graph theory, the McLaughlin graph is a strongly regular graph with parameters (275,112,30,56), and is the only such graph. The group theorist Jack McLaughlin discovered that the automorphism group of this graph h .... References * External links * Individual g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting poin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Theory
In mathematics, graph theory is the study of '' graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are connected by ''edges'' (also called ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a set of vertices (also called nodes or points); * E \subseteq \, a set of edges (also called links or lines), which are unordered pairs of vertices (that is, an edge is associated with t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Strongly Regular Graph
In graph theory, a strongly regular graph (SRG) is defined as follows. Let be a regular graph with vertices and degree . is said to be strongly regular if there are also integers and such that: * Every two adjacent vertices have common neighbours. * Every two non-adjacent vertices have common neighbours. The complement of an is also strongly regular. It is a . A strongly regular graph is a distance-regular graph with diameter 2 whenever μ is non-zero. It is a locally linear graph whenever . Etymology A strongly regular graph is denoted an srg(''v'', ''k'', λ, μ) in the literature. By convention, graphs which satisfy the definition trivially are excluded from detailed studies and lists of strongly regular graphs. These include the disjoint union of one or more equal-sized complete graphs, and their complements, the complete multipartite graphs with equal-sized independent sets. Andries Brouwer and Hendrik van Maldeghem (see #References) use an alternate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field (mathematics), fields, and vector spaces, can all be seen as groups endowed with additional operation (mathematics), operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right. Various physical systems, such as crystals and the hydrogen atom, and Standard Model, three of the four known fundamental forces in the universe, may be modelled by symmetry groups. Thus group theory and the closely related representation theory have many important applications in physics, chemistry, and materials science. Group theory is also ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Automorphism Group
In mathematics, the automorphism group of an object ''X'' is the group consisting of automorphisms of ''X'' under composition of morphisms. For example, if ''X'' is a finite-dimensional vector space, then the automorphism group of ''X'' is the group of invertible linear transformations from ''X'' to itself (the general linear group of ''X''). If instead ''X'' is a group, then its automorphism group \operatorname(X) is the group consisting of all group automorphisms of ''X''. Especially in geometric contexts, an automorphism group is also called a symmetry group. A subgroup of an automorphism group is sometimes called a transformation group. Automorphism groups are studied in a general way in the field of category theory. Examples If ''X'' is a set with no additional structure, then any bijection from ''X'' to itself is an automorphism, and hence the automorphism group of ''X'' in this case is precisely the symmetric group of ''X''. If the set ''X'' has additional str ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finite Simple Group
Finite is the opposite of infinite. It may refer to: * Finite number (other) * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or marked for person and/or tense or aspect * "Finite", a song by Sara Groves from the album ''Invisible Empires ''Invisible Empires'' is the seventh studio album and tenth album overall from Christian singer and songwriter Sara Groves, and it released on October 18, 2011 by Fair Trade and Columbia Records. The producers on the album were Steve Hindalong a ...'' See also * * Nonfinite (other) {{disambiguation fr:Fini it:Finito ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




McLaughlin Sporadic Group
In the area of modern algebra known as group theory, the McLaughlin group McL is a sporadic simple group of order :   27 ⋅ 36 ⋅ 53 ⋅ 7 ⋅ 11 = 898,128,000 : ≈ 9. History and properties McL is one of the 26 sporadic groups and was discovered by as an index 2 subgroup of a rank 3 permutation group acting on the McLaughlin graph with vertices. It fixes a 2-2-3 triangle in the Leech lattice and thus is a subgroup of the Conway groups \mathrm_0, \mathrm_2, and \mathrm_3. Its Schur multiplier has order 3, and its outer automorphism group has order 2. The group 3.McL:2 is a maximal subgroup of the Lyons group. McL has one conjugacy class of involution (element of order 2), whose centralizer is a maximal subgroup of type 2.A8. This has a center of order 2; the quotient modulo the center is isomorphic to the alternating group A8. Representations In the Conway group Co3, McL has the normalizer McL:2, which is maximal in Co3. McL has 2 cla ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rank 3 Permutation Group
Rank is the relative position, value, worth, complexity, power, importance, authority, level, etc. of a person or object within a ranking, such as: Level or position in a hierarchical organization * Academic rank * Diplomatic rank * Hierarchy * Hierarchy of the Catholic Church * Military rank * Police ranks of the United States * Ranking member, S politicsthe most senior member of a committee from the minority party, and thus second-most senior member of a committee * Imperial, royal and noble ranks Level or position in society * Social class *Social position *Social status Places * Rank, Iran, a village * Rank, Nepal, a village development committee People * Rank (surname), a list of people with the name Arts, entertainment, and media Music * ''Rank'' (album), a live album by the Smiths * "Rank", a song by Artwork from '' A Bugged Out Mix'' Other arts, entertainment, and media * Rank (chess), a row of the chessboard * ''Rank'' (film), a short film directed by David Yates ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Point Stabilizer
In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphism group of the structure. It is said that the group ''acts'' on the space or structure. If a group acts on a structure, it will usually also act on objects built from that structure. For example, the group of Euclidean isometries acts on Euclidean space and also on the figures drawn in it. For example, it acts on the set of all triangles. Similarly, the group of symmetries of a polyhedron acts on the vertices, the edges, and the faces of the polyhedron. A group action on a vector space is called a representation of the group. In the case of a finite-dimensional vector space, it allows one to identify many groups with subgroups of , the group of the invertible matrices of dimension over a field . The symmetric group acts on any set with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Orbit (group Theory)
In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphism group of the structure. It is said that the group ''acts'' on the space or structure. If a group acts on a structure, it will usually also act on objects built from that structure. For example, the group of Euclidean isometries acts on Euclidean space and also on the figures drawn in it. For example, it acts on the set of all triangles. Similarly, the group of symmetries of a polyhedron acts on the vertices, the edges, and the faces of the polyhedron. A group action on a vector space is called a representation of the group. In the case of a finite-dimensional vector space, it allows one to identify many groups with subgroups of , the group of the invertible matrices of dimension over a field . The symmetric group acts on any ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Generalized Quadrangle
In geometry, a generalized quadrangle is an incidence structure whose main feature is the lack of any triangles (yet containing many quadrangles). A generalized quadrangle is by definition a polar space of rank two. They are the with ''n'' = 4 and near 2n-gons with ''n'' = 2. They are also precisely the partial geometries pg(''s'',''t'',α) with α = 1. Definition A generalized quadrangle is an incidence structure (''P'',''B'',I), with I ⊆ ''P'' × ''B'' an incidence relation, satisfying certain axioms. Elements of ''P'' are by definition the ''points'' of the generalized quadrangle, elements of ''B'' the ''lines''. The axioms are the following: * There is an ''s'' (''s'' ≥ 1) such that on every line there are exactly ''s'' + 1 points. There is at most one point on two distinct lines. * There is a ''t'' (''t'' ≥ 1) such that through every point there are exactly ''t'' + 1 lines. There is at most one line through two distinct points. * For every point ''p'' not on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Local McLaughlin Graph
In the mathematical field of graph theory, the McLaughlin graph is a strongly regular graph with parameters (275,112,30,56), and is the only such graph. The group theorist Jack McLaughlin discovered that the automorphism group of this graph had a subgroup of index 2 which was a previously undiscovered finite simple group, now called the McLaughlin sporadic group. The automorphism group has rank 3, meaning that its point stabilizer In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphism g ... subgroup divides the remaining 274 vertices into two orbits. Those orbits contain 112 and 162 vertices. The former is the colinearity graph of the generalized quadrangle GQ(3,9). The latter is a strongly regular graph called the local McLaughlin graph. References * External links * Indiv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]