Mass Spectrometric Detector
A chromatography detector is a device that detects and quantifies separated compounds as they elute from the Chromatography column, chromatographic column. These detectors are integral to various chromatographic techniques, such as gas chromatography, Chromatography, liquid chromatography, and high-performance liquid chromatography, and supercritical fluid chromatography among others. The main function of a chromatography detector is to translate the physical or chemical properties of the analyte molecules into measurable signal, typically electrical signal, that can be displayed as a function of time in a graphical presentation, called a chromatograms. Chromatograms can provide valuable information about the composition and concentration of the components in the sample. Detectors operate based on specific principles, including optical, electrochemical, thermal conductivity, fluorescence, mass spectrometry, and more. Each type of detector has its unique capabilities and is suitable ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chromatography Column
A chromatography column is a device used in chromatography for the separation of chemical compounds. A chromatography column contains the stationary phase, allowing the mobile phase to pass through it. Materials Chromatography columns of different types are used in both gas and liquid chromatography: * Liquid chromatography: Traditional chromatography columns were made of glass. Modern columns are mostly made of borosilicate glass, acrylic glass or stainless steel. To prevent the stationary phase from leaking out of the column interior a polymer, stainless steel or ceramic net is usually applied. Depending on the application material- and size-requirements may change. * Gas chromatography (GC): Older columns were made of glass or metal packed with particles of a solid stationary phase. More recently, narrower diameter (capillary) columns have been made using fused silica coated on the inside with a film of the stationary phase material. GC columns are typically very long to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lipidomics
Lipidomics is the large-scale study of pathways and networks of cellular lipids in biological systems. The word "lipidome" is used to describe the complete lipid profile within a cell, tissue, organism, or ecosystem and is a subset of the "metabolome" which also includes other major classes of biological molecules (such as amino acids, sugars, glycolysis & TCA intermediates, and nucleic acids). Lipidomics is a relatively recent research field that has been driven by rapid advances in technologies such as mass spectrometry (MS), nuclear magnetic resonance (NMR) spectroscopy, fluorescence spectroscopy, dual polarisation interferometry and computational methods, coupled with the recognition of the role of lipids in many metabolic diseases such as obesity, atherosclerosis, stroke, hypertension and diabetes. This rapidly expanding field complements the huge progress made in genomics and proteomics, all of which constitute the family of systems biology. Lipidomics research involves the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gas Chromatography-olfactometry
Gas chromatography-olfactometry (GC-O) is a technique that integrates the separation of volatile compounds using a gas chromatograph with the detection of odour using an olfactometer (human assessor). It was first invented and applied in 1964 by Fuller and co-workers. While GC separates volatile compounds from an extract, human olfaction detects the odour activity of each eluting compound. In this olfactometric detection, a human assessor may qualitatively determine whether a compound has odour activity or describe the odour perceived, or quantitatively evaluate the intensity of the odour or the duration of the odour activity. The olfactometric detection of compounds allows the assessment of the relationship between a quantified substance and the human perception of its odour, without instrumental detection limits present in other kinds of detectors. Compound identification still requires use of other detectors, such as mass spectrometry, with analytical standards. Olfactory per ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Photoionization Detector
A photoionization detector or PID is a type of gas detector. Typical photoionization detectors measure volatile organic compounds and other gases in concentrations from sub parts per billion to 10 000 parts per million (ppm). The photoionization detector is an efficient and inexpensive detector for many gas and vapor analytes. PIDs produce instantaneous readings, operate continuously, and are commonly used as detectors for gas chromatography or as hand-held portable instruments. Hand-held, battery-operated versions are widely used in military, industrial, and confined working facilities for health and safety. Their primary use is for monitoring possible worker exposure to volatile organic compounds (VOCs) such as solvents, fuels, degreasers, plastics and their precursors, heat transfer fluids, lubricants, etc. during manufacturing processes and waste handling. Portable PIDs are used for monitoring: * Industrial hygiene and safety * Environmental contamination and remediation * H ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Electron Capture Detector
An electron capture detector (ECD) is a device for detecting atoms and molecules in a gas through the attachment of electrons via electron capture ionization. The device was invented in 1957 by James Lovelock and is used in gas chromatography to detect trace amounts of chemical compounds in a sample. Gas chromatograph detector The electron capture detector is used for detecting electron-absorbing components (high electronegativity) such as halogenated compounds in the output stream of a gas chromatograph. The ECD uses a radioactive beta particle (electron) emitter in conjunction with a so-called makeup gas flowing through the detector chamber. The electron emitter typically consists of a metal foil holding 10 millicuries (370 M Bq) of the radionuclide . Usually, nitrogen is used as makeup gas, because it exhibits a low excitation energy, so it is easy to remove an electron from a nitrogen molecule. The electrons emitted from the electron emitter collide with the molecules of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Thermal Conductivity Detector
The thermal conductivity detector (TCD), also known as a katharometer, is a bulk property detector and a chemical specific detector commonly used in gas chromatography. This detector senses changes in the thermal conductivity of the column eluent and compares it to a reference flow of carrier gas. Since most compounds have a thermal conductivity much less than that of the common carrier gases of helium or hydrogen, when an analyte elutes from the column the effluent thermal conductivity is reduced, and a detectable signal is produced. Operation The TCD consists of an electrically heated filament in a temperature-controlled cell. Under normal conditions there is a stable heat flow from the filament to the detector body. When an analyte elutes and the thermal conductivity of the column effluent is reduced, the filament heats up and changes resistance. This resistance change is often sensed by a Wheatstone bridge circuit which produces a measurable voltage change. The column effluent f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Optical Activity
Optical rotation, also known as polarization rotation or circular birefringence, is the rotation of the orientation of the plane of polarization about the optical axis of linearly polarized light as it travels through certain materials. Circular birefringence and circular dichroism are the manifestations of optical activity. Optical activity occurs only in chiral materials, those lacking microscopic mirror symmetry. Unlike other sources of birefringence which alter a beam's state of polarization, optical activity can be observed in fluids. This can include gases or solutions of chiral molecules such as sugars, molecules with helical secondary structure such as some proteins, and also chiral liquid crystals. It can also be observed in chiral solids such as certain crystals with a rotation between adjacent crystal planes (such as quartz) or metamaterials. When looking at the source of light, the rotation of the plane of polarization may be either to the right (dextrorotatory ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Liquid Scintillation Counting
Liquid scintillation counting is the measurement of radioactive activity of a sample material which uses the technique of mixing the active material with a liquid scintillator (e.g. zinc sulfide), and counting the resultant photon emissions. The purpose is to allow more efficient counting due to the intimate contact of the activity with the scintillator. It is generally used for alpha particle or beta particle detection. Technique Samples are dissolved or suspended in a "cocktail" containing a solvent (historically aromatic organics such as xylene or toluene, but more recently less hazardous solvents are used), typically some form of a surfactant, and "fluors" or scintillators which produce the light measured by the detector. Scintillators can be divided into primary and secondary phosphors, differing in their luminescence properties. Beta particles emitted from the isotopic sample transfer energy to the solvent molecules: the Aromaticity, π cloud of the aromatic ring absorbs the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Size Exclusion Chromatography
Size-exclusion chromatography, also known as molecular sieve chromatography, is a chromatographic method in which molecules in solution are separated by their shape, and in some cases size. It is usually applied to large molecules or macromolecular complexes such as proteins and industrial polymers. Typically, when an aqueous solution is used to transport the sample through the column, the technique is known as gel filtration chromatography, versus the name gel permeation chromatography, which is used when an organic solvent is used as a mobile phase. The chromatography column is packed with fine, porous beads which are commonly composed of dextran, agarose, or polyacrylamide polymers. The pore sizes of these beads are used to estimate the dimensions of macromolecules. SEC is a widely used polymer characterization method because of its ability to provide good molar mass distribution (Mw) results for polymers. Size-exclusion chromatography (SEC) is fundamentally different from al ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Refractive Index Detector
A differential refractometer (DRI), or refractive index detector (RI or RID) is a detector that measures the refractive index of an analyte relative to the solvent. They are often used as detectors for high-performance liquid chromatography and size exclusion chromatography. They are considered to be universal detectors because they can detect anything with a refractive index different from the solvent, but they have low sensitivity. Refractive index increment The refractive index increment,\frac, often expressed as mL/g, is the change in a solutions' refractive index vs concentration. A differential refractometer facilitates determining this term. Typical light sources include Helium–neon laser, Argon-ion laser, and Sodium-vapor lamp. There are two compartments or flow cells, one for the sample and the other for the reference solution. The optical wedge or prism sits after the cells and separates the light coming from the flow cells. The difference in refractive index causes ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fluorescence Spectroscopy
Fluorescence spectroscopy (also known as fluorimetry or spectrofluorometry) is a type of electromagnetic spectroscopy that analyzes fluorescence from a sample. It involves using a beam of light, usually ultraviolet light, that excites the electrons in molecules of certain compounds and causes them to emit light; typically, but not necessarily, visible light. A complementary technique is absorption spectroscopy. In the special case of single molecule fluorescence spectroscopy, intensity fluctuations from the emitted light are measured from either single fluorophores, or pairs of fluorophores. Devices that measure fluorescence are called fluorometers. Theory Molecules have various states referred to as energy levels. Fluorescence spectroscopy is primarily concerned with electronic and vibrational states. Generally, the species being examined has a ground electronic state (a low energy state) of interest, and an excited electronic state of higher energy. Within each of these ele ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
UV Detectors
An ultraviolet detector (also known as UV detector or UV-Vis detector) is a type of non-destructive chromatography detector which measures the amount of ultraviolet or visible light absorbed by components of the mixture being eluted off the chromatography column. They are often used as detectors for high-performance liquid chromatography. The vast majority of liquid chromatographic systems are equipped with ultraviolet (UV) absorption detectors. The most common UV-Vis detectors used are variable wavelength detectors (VWD), photo diode array detectors (PDA), and diode array detectors (DAD). Variable wavelength detectors decide in advance which wavelength is needed for the detection. Its absorbance as function of time is collected in a graphic format called a chromatogram. As can be seen in Figure 1, these detectors have a light source, a dispersion element that is a diffraction grating or prism, a flow cell, to where the sample arrives directly from the chromatographic column, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |