HOME
*





Mackey Topology
In functional analysis and related areas of mathematics, the Mackey topology, named after George Mackey, is the finest topology for a topological vector space which still preserves the continuous dual. In other words the Mackey topology does not make linear functions continuous which were discontinuous in the default topology. A topological vector space (TVS) is called a Mackey space if its topology is the same as the Mackey topology. The Mackey topology is the opposite of the weak topology, which is the coarsest topology on a topological vector space which preserves the continuity of all linear functions in the continuous dual. The Mackey–Arens theorem states that all possible dual topologies are finer than the weak topology and coarser than the Mackey topology. Definition Definition for a pairing Given a pairing (X, Y, b), the Mackey topology on X induced by (X, Y, b), denoted by \tau(X, Y, b), is the polar topology defined on X by using the set of all \sigma(Y, X, b)- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Functional Analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. inner product, norm, topology, etc.) and the linear functions defined on these spaces and respecting these structures in a suitable sense. The historical roots of functional analysis lie in the study of spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining continuous, unitary etc. operators between function spaces. This point of view turned out to be particularly useful for the study of differential and integral equations. The usage of the word '' functional'' as a noun goes back to the calculus of variations, implying a function whose argument is a function. The term was first used in Hadamard's 1910 book on that subject. However, the general concept of a functional had previously been introduced in 1887 by the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Absolutely Convex
In mathematics, a subset ''C'' of a real or complex vector space is said to be absolutely convex or disked if it is convex and balanced (some people use the term "circled" instead of "balanced"), in which case it is called a disk. The disked hull or the absolute convex hull of a set is the intersection of all disks containing that set. Definition A subset S of a real or complex vector space X is called a ' and is said to be ', ', and ' if any of the following equivalent conditions is satisfied: S is a convex and balanced set. for any scalar a and b, if , a, + , b, \leq 1 then a S + b S \subseteq S. for all scalars a, b, and c, if , a, + , b, \leq , c, , then a S + b S \subseteq c S. for any scalars a_1, \ldots, a_n and c, if , a_1, + \cdots + , a_n, \leq , c, then a_1 S + \cdots + a_n S \subseteq c S. for any scalars a_1, \ldots, a_n, if , a_1, + \cdots + , a_n, \leq 1 then a_1 S + \cdots + a_n S \subseteq S. The smallest convex (respectively, balanced) subset of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press in the world. It is also the King's Printer. Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. It became part of Cambridge University Press & Assessment, following a merger with Cambridge Assessment in 2021. With a global sales presence, publishing hubs, and offices in more than 40 Country, countries, it publishes over 50,000 titles by authors from over 100 countries. Its publishing includes more than 380 academic journals, monographs, reference works, school and university textbooks, and English language teaching and learning publications. It also publishes Bibles, runs a bookshop in Cambridge, sells through Amazon, and has a conference venues business in Cambridge at the Pitt Building and the Sir Geoffrey Cass Spo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Strong Topology
In mathematics, a strong topology is a topology which is stronger than some other "default" topology. This term is used to describe different topologies depending on context, and it may refer to: * the final topology on the disjoint union * the topology arising from a norm * the strong operator topology * the strong topology (polar topology), which subsumes all topologies above. A topology τ is stronger than a topology σ (is a finer topology) if τ contains all the open sets of σ. In algebraic geometry, it usually means the topology of an algebraic variety as complex manifold In differential geometry and complex geometry, a complex manifold is a manifold with an atlas of charts to the open unit disc in \mathbb^n, such that the transition maps are holomorphic. The term complex manifold is variously used to mean a com ... or subspace of complex projective space, as opposed to the Zariski topology (which is rarely even a Hausdorff space). See also * Weak topolog ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fréchet Space
In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces ( normed vector spaces that are complete with respect to the metric induced by the norm). All Banach and Hilbert spaces are Fréchet spaces. Spaces of infinitely differentiable functions are typical examples of Fréchet spaces, many of which are typically Banach spaces. A Fréchet space X is defined to be a locally convex metrizable topological vector space (TVS) that is complete as a TVS, meaning that every Cauchy sequence in X converges to some point in X (see footnote for more details).Here "Cauchy" means Cauchy with respect to the canonical uniformity that every TVS possess. That is, a sequence x_ = \left(x_m\right)_^ in a TVS X is Cauchy if and only if for all neighborhoods U of the origin in X, x_m - x_n \in U whenever m and n are sufficiently large. Note that this definit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Barrelled Space
In functional analysis and related areas of mathematics, a barrelled space (also written barreled space) is a topological vector space (TVS) for which every barrelled set in the space is a neighbourhood for the zero vector. A barrelled set or a barrel in a topological vector space is a set that is convex, balanced, absorbing, and closed. Barrelled spaces are studied because a form of the Banach–Steinhaus theorem still holds for them. Barrelled spaces were introduced by . Barrels A convex and balanced subset of a real or complex vector space is called a and it is said to be , , or . A or a in a topological vector space (TVS) is a subset that is a closed absorbing disk; that is, a barrel is a convex, balanced, closed, and absorbing subset. Every barrel must contain the origin. If \dim X \geq 2 and if S is any subset of X, then S is a convex, balanced, and absorbing set of X if and only if this is all true of S \cap Y in Y for every 2-dimensional vector subspace Y; ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hausdorff Space
In topology and related branches of mathematics, a Hausdorff space ( , ), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each which are disjoint from each other. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters. Hausdorff spaces are named after Felix Hausdorff, one of the founders of topology. Hausdorff's original definition of a topological space (in 1914) included the Hausdorff condition as an axiom. Definitions Points x and y in a topological space X can be '' separated by neighbourhoods'' if there exists a neighbourhood U of x and a neighbourhood V of y such that U and V are disjoint (U\cap V=\varnothing). X is a Hausdorff space if any two distinct points in X are separated by neighbourhoods. This condition is the third separati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Locally Convex Topological Vector Space
In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals. Fréchet spaces are locally convex spaces that are completely metrizable (with a choice of complete metric). They are generalizations of Banach spaces, which are complete vector spaces with respect to a metric generated by a norm. History Metrizable topol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Metrizable Topological Vector Space
In functional analysis and related areas of mathematics, a metrizable (resp. pseudometrizable) topological vector space (TVS) is a TVS whose topology is induced by a metric (resp. pseudometric). An LM-space is an inductive limit of a sequence of locally convex metrizable TVS. Pseudometrics and metrics A pseudometric on a set X is a map d : X \times X \rarr \R satisfying the following properties: d(x, x) = 0 \text x \in X; Symmetry: d(x, y) = d(y, x) \text x, y \in X; Subadditivity: d(x, z) \leq d(x, y) + d(y, z) \text x, y, z \in X. A pseudometric is called a metric if it satisfies: Identity of indiscernibles: for all x, y \in X, if d(x, y) = 0 then x = y. Ultrapseudometric A pseudometric d on X is called a ultrapseudometric or a strong pseudometric if it satisfies: Strong/Ultrametric triangle inequality: d(x, z) \leq \max \ \text x, y, z \in X. Pseudometric space A pseudometric space is a pair (X, d) consisting of a set X and a pseudometric d on X such that X' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Absolutely Convex
In mathematics, a subset ''C'' of a real or complex vector space is said to be absolutely convex or disked if it is convex and balanced (some people use the term "circled" instead of "balanced"), in which case it is called a disk. The disked hull or the absolute convex hull of a set is the intersection of all disks containing that set. Definition A subset S of a real or complex vector space X is called a ' and is said to be ', ', and ' if any of the following equivalent conditions is satisfied: S is a convex and balanced set. for any scalar a and b, if , a, + , b, \leq 1 then a S + b S \subseteq S. for all scalars a, b, and c, if , a, + , b, \leq , c, , then a S + b S \subseteq c S. for any scalars a_1, \ldots, a_n and c, if , a_1, + \cdots + , a_n, \leq , c, then a_1 S + \cdots + a_n S \subseteq c S. for any scalars a_1, \ldots, a_n, if , a_1, + \cdots + , a_n, \leq 1 then a_1 S + \cdots + a_n S \subseteq S. The smallest convex (respectively, balanced) subset of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Weak* Topology
In mathematics, weak topology is an alternative term for certain initial topologies, often on topological vector spaces or spaces of linear operators, for instance on a Hilbert space. The term is most commonly used for the initial topology of a topological vector space (such as a normed vector space) with respect to its continuous dual. The remainder of this article will deal with this case, which is one of the concepts of functional analysis. One may call subsets of a topological vector space weakly closed (respectively, weakly compact, etc.) if they are closed (respectively, compact, etc.) with respect to the weak topology. Likewise, functions are sometimes called weakly continuous (respectively, weakly differentiable, weakly analytic, etc.) if they are continuous (respectively, differentiable, analytic, etc.) with respect to the weak topology. History Starting in the early 1900s, David Hilbert and Marcel Riesz made extensive use of weak convergence. The early pioneers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Continuous Dual Space
In mathematics, any vector space ''V'' has a corresponding dual vector space (or just dual space for short) consisting of all linear forms on ''V'', together with the vector space structure of pointwise addition and scalar multiplication by constants. The dual space as defined above is defined for all vector spaces, and to avoid ambiguity may also be called the . When defined for a topological vector space, there is a subspace of the dual space, corresponding to continuous linear functionals, called the ''continuous dual space''. Dual vector spaces find application in many branches of mathematics that use vector spaces, such as in tensor analysis with finite-dimensional vector spaces. When applied to vector spaces of functions (which are typically infinite-dimensional), dual spaces are used to describe measures, distributions, and Hilbert spaces. Consequently, the dual space is an important concept in functional analysis. Early terms for ''dual'' include ''polarer Raum'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]