HOME





Lévy's Continuity Theorem
In probability theory, Lévy’s continuity theorem, or Lévy's convergence theorem, named after the French mathematician Paul Lévy, connects convergence in distribution of the sequence of random variables with pointwise convergence of their characteristic functions. This theorem is the basis for one approach to prove the central limit theorem In probability theory, the central limit theorem (CLT) states that, under appropriate conditions, the Probability distribution, distribution of a normalized version of the sample mean converges to a Normal distribution#Standard normal distributi ... and is one of the major theorems concerning characteristic functions. Statement Suppose we have If the sequence of characteristic functions converges pointwise to some function \varphi :\varphi_n(t)\to\varphi(t) \quad \forall t\in\mathbb, then the following statements become equivalent: Proof Rigorous proofs of this theorem are available. References {{DEFAULTSORT:Levy continuity ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probability Theory
Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms of probability, axioms. Typically these axioms formalise probability in terms of a probability space, which assigns a measure (mathematics), measure taking values between 0 and 1, termed the probability measure, to a set of outcomes called the sample space. Any specified subset of the sample space is called an event (probability theory), event. Central subjects in probability theory include discrete and continuous random variables, probability distributions, and stochastic processes (which provide mathematical abstractions of determinism, non-deterministic or uncertain processes or measured Quantity, quantities that may either be single occurrences or evolve over time in a random fashion). Although it is no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematician
A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems. Mathematicians are concerned with numbers, data, quantity, mathematical structure, structure, space, Mathematical model, models, and mathematics#Calculus and analysis, change. History One of the earliest known mathematicians was Thales of Miletus (); he has been hailed as the first true mathematician and the first known individual to whom a mathematical discovery has been attributed. He is credited with the first use of deductive reasoning applied to geometry, by deriving four corollaries to Thales's theorem. The number of known mathematicians grew when Pythagoras of Samos () established the Pythagorean school, whose doctrine it was that mathematics ruled the universe and whose motto was "All is number". It was the Pythagoreans who coined the term "mathematics", and with whom the study of mathematics for its own sake begins. The first woman math ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Paul Lévy (mathematician)
Paul Pierre Lévy (15 September 1886 – 15 December 1971) was a French mathematician who was active especially in probability theory, introducing fundamental concepts such as local time, stable distributions and characteristic functions. Lévy processes, Lévy flights, Lévy measures, Lévy's constant, the Lévy distribution, the Lévy area, the Lévy arcsine law, and the fractal Lévy C curve are named after him. Biography Lévy was born in Paris to a Jewish family which already included several mathematicians. His father Lucien Lévy was an examiner at the École Polytechnique. Lévy attended the École Polytechnique and published his first paper in 1905, at the age of nineteen, while still an undergraduate, in which he introduced the Lévy–Steinitz theorem. His teacher and advisor was Jacques Hadamard. After graduation, he spent a year in military service and then studied for three years at the École des Mines, where he became a professor in 1913. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Convergence In Distribution
In probability theory, there exist several different notions of convergence of sequences of random variables, including ''convergence in probability'', ''convergence in distribution'', and ''almost sure convergence''. The different notions of convergence capture different properties about the sequence, with some notions of convergence being stronger than others. For example, convergence in distribution tells us about the limit distribution of a sequence of random variables. This is a weaker notion than convergence in probability, which tells us about the value a random variable will take, rather than just the distribution. The concept is important in probability theory, and its applications to statistics and stochastic processes. The same concepts are known in more general mathematics as stochastic convergence and they formalize the idea that certain properties of a sequence of essentially random or unpredictable events can sometimes be expected to settle down into a behavior that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pointwise Convergence
In mathematics, pointwise convergence is one of Modes of convergence (annotated index), various senses in which a sequence of function (mathematics), functions can Limit (mathematics), converge to a particular function. It is weaker than uniform convergence, to which it is often compared. Definition Suppose that X is a set and Y is a topological space, such as the Real number, real or complex numbers or a metric space, for example. A sequence of Function (mathematics), functions \left(f_n\right) all having the same domain X and codomain Y is said to converge pointwise to a given function f : X \to Y often written as \lim_ f_n = f\ \mbox if (and only if) the limit of a sequence, limit of the sequence f_n(x) evaluated at each point x in the domain of f is equal to f(x), written as \forall x \in X, \lim_ f_n(x) = f(x). The function f is said to be the pointwise limit function of the \left(f_n\right). The definition easily generalizes from sequences to Net (mathematics), nets f_\bull ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Characteristic Function (probability Theory)
In probability theory and statistics, the characteristic function of any real-valued random variable completely defines its probability distribution. If a random variable admits a probability density function, then the characteristic function is the Fourier transform (with sign reversal) of the probability density function. Thus it provides an alternative route to analytical results compared with working directly with probability density functions or cumulative distribution functions. There are particularly simple results for the characteristic functions of distributions defined by the weighted sums of random variables. In addition to univariate distributions, characteristic functions can be defined for vector- or matrix-valued random variables, and can also be extended to more generic cases. The characteristic function always exists when treated as a function of a real-valued argument, unlike the moment-generating function. There are relations between the behavior of the charact ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Central Limit Theorem
In probability theory, the central limit theorem (CLT) states that, under appropriate conditions, the Probability distribution, distribution of a normalized version of the sample mean converges to a Normal distribution#Standard normal distribution, standard normal distribution. This holds even if the original variables themselves are not Normal distribution, normally distributed. There are several versions of the CLT, each applying in the context of different conditions. The theorem is a key concept in probability theory because it implies that probabilistic and statistical methods that work for normal distributions can be applicable to many problems involving other types of distributions. This theorem has seen many changes during the formal development of probability theory. Previous versions of the theorem date back to 1811, but in its modern form it was only precisely stated as late as 1920. In statistics, the CLT can be stated as: let X_1, X_2, \dots, X_n denote a Sampling ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Random Variable
A random variable (also called random quantity, aleatory variable, or stochastic variable) is a Mathematics, mathematical formalization of a quantity or object which depends on randomness, random events. The term 'random variable' in its mathematical definition refers to neither randomness nor variability but instead is a mathematical function (mathematics), function in which * the Domain of a function, domain is the set of possible Outcome (probability), outcomes in a sample space (e.g. the set \ which are the possible upper sides of a flipped coin heads H or tails T as the result from tossing a coin); and * the Range of a function, range is a measurable space (e.g. corresponding to the domain above, the range might be the set \ if say heads H mapped to -1 and T mapped to 1). Typically, the range of a random variable is a subset of the Real number, real numbers. Informally, randomness typically represents some fundamental element of chance, such as in the roll of a dice, d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probability Space
In probability theory, a probability space or a probability triple (\Omega, \mathcal, P) is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models the throwing of a . A probability space consists of three elements:Stroock, D. W. (1999). Probability theory: an analytic view. Cambridge University Press. # A '' sample space'', \Omega, which is the set of all possible outcomes of a random process under consideration. # An event space, \mathcal, which is a set of events, where an event is a subset of outcomes in the sample space. # A '' probability function'', P, which assigns, to each event in the event space, a probability, which is a number between 0 and 1 (inclusive). In order to provide a model of probability, these elements must satisfy probability axioms. In the example of the throw of a standard die, # The sample space \Omega is typically the set \ where each element in the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Expected Value
In probability theory, the expected value (also called expectation, expectancy, expectation operator, mathematical expectation, mean, expectation value, or first Moment (mathematics), moment) is a generalization of the weighted average. Informally, the expected value is the arithmetic mean, mean of the possible values a random variable can take, weighted by the probability of those outcomes. Since it is obtained through arithmetic, the expected value sometimes may not even be included in the sample data set; it is not the value you would expect to get in reality. The expected value of a random variable with a finite number of outcomes is a weighted average of all possible outcomes. In the case of a continuum of possible outcomes, the expectation is defined by Integral, integration. In the axiomatic foundation for probability provided by measure theory, the expectation is given by Lebesgue integration. The expected value of a random variable is often denoted by , , or , with a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Convergence Of Random Variables
In probability theory, there exist several different notions of convergence of sequences of random variables, including ''convergence in probability'', ''convergence in distribution'', and ''almost sure convergence''. The different notions of convergence capture different properties about the sequence, with some notions of convergence being stronger than others. For example, convergence in distribution tells us about the limit distribution of a sequence of random variables. This is a weaker notion than convergence in probability, which tells us about the value a random variable will take, rather than just the distribution. The concept is important in probability theory, and its applications to statistics and stochastic processes. The same concepts are known in more general mathematics as stochastic convergence and they formalize the idea that certain properties of a sequence of essentially random or unpredictable events can sometimes be expected to settle down into a behavior that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Tightness Of Measures
In mathematics, tightness is a concept in measure theory. The intuitive idea is that a given collection of measures does not "escape to infinity". Definitions Let (X, T) be a Hausdorff space, and let \Sigma be a σ-algebra on X that contains the topology T. (Thus, every open subset of X is a measurable set and \Sigma is at least as fine as the Borel σ-algebra on X.) Let M be a collection of (possibly signed or complex) measures defined on \Sigma. The collection M is called tight (or sometimes uniformly tight) if, for any \varepsilon > 0, there is a compact subset K_ of X such that, for all measures \mu \in M, :, \mu, (X \setminus K_) 1 - \varepsilon. \, If a tight collection M consists of a single measure \mu, then (depending upon the author) \mu may either be said to be a tight measure or to be an inner regular measure. If Y is an X-valued random variable whose probability distribution on X is a tight measure then Y is said to be a separable random variabl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]