HOME





Loupekine Snark (second)
In the mathematical field of graph theory, the Loupekine snarks are two snarks, both with 22 vertices and 33 edges. The first Loupekine snark graph can be described as follows (using the SageMath SageMath (previously Sage or SAGE, "System for Algebra and Geometry Experimentation") is a computer algebra system (CAS) with features covering many aspects of mathematics, including algebra, combinatorics, graph theory, numerical analysis, nu ...'s syntaxhttp://doc.sagemath.org/pdf/en/reference/graphs/graphs.pdf ): : lou1 = Graph(). The second Loupekine snark is obtained (up to an isomorphism) by replacing edges 5–6 and 11–12 by edges 5–12 and 6–11 in the first graph. Properties Both snarks share the same invariants (as given in the boxes). The set of all the automorphisms of a graph is a group for the composition. For both Loupekine snarks, this group is the dihedral group D_6 (identified as 2,4in the Small Groups Database). The orbits under the action of D_6 ar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Theory
In mathematics, graph theory is the study of '' graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are connected by ''edges'' (also called ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a set of vertices (also called nodes or points); * E \subseteq \, a set of edges (also called links or lines), which are unordered pairs of vertices (that is, an edge is associated with t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Snark (graph Theory)
In the mathematical field of graph theory, a snark is an undirected graph with exactly three edges per vertex whose edges cannot be colored with only three colors. In order to avoid trivial cases, snarks are often restricted to have additional requirements on their connectivity and on the length of their cycles. Infinitely many snarks exist. One of the equivalent forms of the four color theorem is that every snark is a non-planar graph. Research on snarks originated in Peter G. Tait's work on the four color theorem in 1880, but their name is much newer, given to them by Martin Gardner in 1976. Beyond coloring, snarks also have connections to other hard problems in graph theory: writing in the ''Electronic Journal of Combinatorics'', Miroslav Chladný and Martin Škoviera state that As well as the problems they mention, W. T. Tutte's ''snark conjecture'' concerns the existence of Petersen graphs as graph minors of snarks; its proof has been long announced but remains unp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

SageMath
SageMath (previously Sage or SAGE, "System for Algebra and Geometry Experimentation") is a computer algebra system (CAS) with features covering many aspects of mathematics, including algebra, combinatorics, graph theory, numerical analysis, number theory, calculus and statistics. The first version of SageMath was released on 24 February 2005 as free and open-source software under the terms of the GNU General Public License version 2, with the initial goals of creating an "open source alternative to Magma, Maple, Mathematica, and MATLAB". The originator and leader of the SageMath project, William Stein, was a mathematician at the University of Washington. SageMath uses a syntax resembling Python's, supporting procedural, functional and object-oriented constructs. Development Stein realized when designing Sage that there were many open-source mathematics software packages already written in different languages, namely C, C++, Common Lisp, Fortran and Python. R ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]