Locally Compact Field
In algebra, a locally compact field is a topological field whose topology forms a locally compact Hausdorff space.. These kinds of fields were originally introduced in p-adic analysis since the fields \mathbb_p of p-adic numbers are locally compact topological spaces constructed from the norm , \cdot, _p on \mathbb. The topology (and metric space structure) is essential because it allows one to construct analogues of algebraic number fields in the p-adic context. Structure Finite dimensional vector spaces One of the useful structure theorems for vector spaces over locally compact fields is that the finite dimensional vector spaces have only one equivalence class of norms: the sup norm. pg. 58-59 Finite field extensions Given a finite field extension K/F over a locally compact field F, there is at most one unique field norm , \cdot, _K on K extending the field norm , \cdot, _F; that is,, f, _K = , f, _F for all f\in K which is in the image of F \hookrightarrow K. Note this fo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Topological Field
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements. The theory of fields proves that angle trisection and squaring the circle cannot be done with a compass and straightedge. Galois theory, devoted to understanding the symmetries of field extensions, provides an elegant proof of the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Galois Extension
In mathematics, a Galois extension is an algebraic field extension ''E''/''F'' that is normal and separable; or equivalently, ''E''/''F'' is algebraic, and the field fixed by the automorphism group Aut(''E''/''F'') is precisely the base field ''F''. The significance of being a Galois extension is that the extension has a Galois group and obeys the fundamental theorem of Galois theory. A result of Emil Artin allows one to construct Galois extensions as follows: If ''E'' is a given field, and ''G'' is a finite group of automorphisms of ''E'' with fixed field ''F'', then ''E''/''F'' is a Galois extension. The property of an extension being Galois behaves well with respect to field composition and intersection. Characterization of Galois extensions An important theorem of Emil Artin states that for a finite extension E/F, each of the following statements is equivalent to the statement that E/F is Galois: *E/F is a normal extension and a separable extension. *E is a splitting ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Closure
In mathematics, particularly abstract algebra, an algebraic closure of a field ''K'' is an algebraic extension of ''K'' that is algebraically closed. It is one of many closures in mathematics. Using Zorn's lemmaMcCarthy (1991) p.21Kaplansky (1972) pp.74-76 or the weaker ultrafilter lemma, it can be shown that every field has an algebraic closure, and that the algebraic closure of a field ''K'' is unique up to an isomorphism that fixes every member of ''K''. Because of this essential uniqueness, we often speak of ''the'' algebraic closure of ''K'', rather than ''an'' algebraic closure of ''K''. The algebraic closure of a field ''K'' can be thought of as the largest algebraic extension of ''K''. To see this, note that if ''L'' is any algebraic extension of ''K'', then the algebraic closure of ''L'' is also an algebraic closure of ''K'', and so ''L'' is contained within the algebraic closure of ''K''. The algebraic closure of ''K'' is also the smallest algebraically closed ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Local Field
In mathematics, a field ''K'' is called a non-Archimedean local field if it is complete with respect to a metric induced by a discrete valuation ''v'' and if its residue field ''k'' is finite. In general, a local field is a locally compact topological field with respect to a non-discrete topology. The real numbers R, and the complex numbers C (with their standard topologies) are Archimedean local fields. Given a local field, the valuation defined on it can be of either of two types, each one corresponds to one of the two basic types of local fields: those in which the valuation is Archimedean and those in which it is not. In the first case, one calls the local field an Archimedean local field, in the second case, one calls it a non-Archimedean local field. Local fields arise naturally in number theory as completions of global fields. While Archimedean local fields have been quite well known in mathematics for at least 250 years, the first examples of non-Archimedean local ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Discrete Topology
In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points form a , meaning they are '' isolated'' from each other in a certain sense. The discrete topology is the finest topology that can be given on a set. Every subset is open in the discrete topology so that in particular, every singleton subset is an open set in the discrete topology. Definitions Given a set X: A metric space (E,d) is said to be '' uniformly discrete'' if there exists a ' r > 0 such that, for any x,y \in E, one has either x = y or d(x,y) > r. The topology underlying a metric space can be discrete, without the metric being uniformly discrete: for example the usual metric on the set \left\. Properties The underlying uniformity on a discrete metric space is the discrete uniformity, and the underlying topology on a discrete uniform space is the discrete topology. Thus, the different notions of discrete space are compatible with on ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Finite Field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are the integers mod n, integers mod p when p is a prime number. The ''order'' of a finite field is its number of elements, which is either a prime number or a prime power. For every prime number p and every positive integer k there are fields of order p^k. All finite fields of a given order are isomorphism, isomorphic. Finite fields are fundamental in a number of areas of mathematics and computer science, including number theory, algebraic geometry, Galois theory, finite geometry, cryptography and coding theory. Properties A finite field is a finite set that is a fiel ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Scalar Multiplication
In mathematics, scalar multiplication is one of the basic operations defining a vector space in linear algebra (or more generally, a module in abstract algebra). In common geometrical contexts, scalar multiplication of a real Euclidean vector by a positive real number multiplies the magnitude of the vector without changing its direction. Scalar multiplication is the multiplication of a vector by a scalar (where the product is a vector), and is to be distinguished from inner product of two vectors (where the product is a scalar). Definition In general, if ''K'' is a field and ''V'' is a vector space over ''K'', then scalar multiplication is a function from ''K'' × ''V'' to ''V''. The result of applying this function to ''k'' in ''K'' and v in ''V'' is denoted ''k''v. Properties Scalar multiplication obeys the following rules ''(vector in boldface)'': * Additivity in the scalar: (''c'' + ''d'')v = ''c''v + ''d''v; * Additivity in the vector: ''c''(v + w) = ''c''v + ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Field Norm
In mathematics, the (field) norm is a particular mapping defined in field theory, which maps elements of a larger field into a subfield. Formal definition Let ''K'' be a field and ''L'' a finite extension (and hence an algebraic extension) of ''K''. The field ''L'' is then a finite-dimensional vector space over ''K''. Multiplication by ''α'', an element of ''L'', :m_\alpha\colon L\to L :m_\alpha (x) = \alpha x, is a ''K''-linear transformation of this vector space into itself. The norm, N''L''/''K''(''α''), is defined as the determinant of this linear transformation. If ''L''/''K'' is a Galois extension, one may compute the norm of ''α'' ∈ ''L'' as the product of all the Galois conjugates of ''α'': :\operatorname_(\alpha)=\prod_ \sigma(\alpha), where Gal(''L''/''K'') denotes the Galois group of ''L''/''K''. (Note that there may be a repetition in the terms of the product.) For a general field extension ''L''/''K'', and nonzero ''α'' in ''L'', let ''σ''(''α ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Conjugate Element (field Theory)
In mathematics, in particular field theory, the conjugate elements or algebraic conjugates of an algebraic element , over a field extension , are the roots of the minimal polynomial of over . Conjugate elements are commonly called conjugates in contexts where this is not ambiguous. Normally itself is included in the set of conjugates of . Equivalently, the conjugates of are the images of under the field automorphisms of that leave fixed the elements of . The equivalence of the two definitions is one of the starting points of Galois theory. The concept generalizes the complex conjugation, since the algebraic conjugates over \R of a complex number are the number itself and its ''complex conjugate''. Example The cube roots of the number one are: : \sqrt = \begin1 \\ pt-\frac+\fraci \\ pt-\frac-\fraci \end The latter two roots are conjugate elements in with minimal polynomial : \left(x+\frac\right)^2+\frac=x^2+x+1. Properties If ''K'' is given inside an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Minimal Polynomial (field Theory)
In field theory, a branch of mathematics, the minimal polynomial of an element of an extension field of a field is, roughly speaking, the polynomial of lowest degree having coefficients in the smaller field, such that is a root of the polynomial. If the minimal polynomial of exists, it is unique. The coefficient of the highest-degree term in the polynomial is required to be 1. More formally, a minimal polynomial is defined relative to a field extension and an element of the extension field . The minimal polynomial of an element, if it exists, is a member of , the ring of polynomials in the variable with coefficients in . Given an element of , let be the set of all polynomials in such that . The element is called a root or zero of each polynomial in More specifically, ''J''''α'' is the kernel of the ring homomorphism from ''F'' 'x''to ''E'' which sends polynomials ''g'' to their value ''g''(''α'') at the element ''α''. Because it is the kernel of a ring homom ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Finite Field Extension
In mathematics, more specifically field theory, the degree of a field extension is a rough measure of the "size" of the field extension. The concept plays an important role in many parts of mathematics, including algebra and number theory—indeed in any area where fields appear prominently. Definition and notation Suppose that ''E''/''F'' is a field extension. Then ''E'' may be considered as a vector space over ''F'' (the field of scalars). The dimension of this vector space is called the degree of the field extension, and it is denoted by 'E'':''F'' The degree may be finite or infinite, the field being called a finite extension or infinite extension accordingly. An extension ''E''/''F'' is also sometimes said to be simply finite if it is a finite extension; this should not be confused with the fields themselves being finite fields (fields with finitely many elements). The degree should not be confused with the transcendence degree of a field; for example, the field Q('' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Locally Compact Space
In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which every point has a compact neighborhood. When locally compact spaces are Hausdorff they are called locally compact Hausdorff, which are of particular interest in mathematical analysis. Formal definition Let ''X'' be a topological space. Most commonly ''X'' is called locally compact if every point ''x'' of ''X'' has a compact neighbourhood, i.e., there exists an open set ''U'' and a compact set ''K'', such that x\in U\subseteq K. There are other common definitions: They are all equivalent if ''X'' is a Hausdorff space (or preregular). But they are not equivalent in general: :1. every point of ''X'' has a compact neighbourhood. :2. every point of ''X'' has a closed compact neighbourhood. :2′. every point of ''X'' has a relatively comp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |