List Of Things Named After William Rowan Hamilton
{{Short description, none List of things named after William Rowan Hamilton: * Cayley–Hamilton theorem * Hamilton's equations * Hamilton's principle * Hamilton–Jacobi equation ** Hamilton–Jacobi–Bellman equation, related equation in control theory ** Hamilton–Jacobi–Einstein equation Hamiltonian In both ''mathematics'' and ''physics'' (specifically ''mathematical physics''): the term Hamiltonian refers to any energy function defined by a Hamiltonian vector field, a particular vector field on a symplectic manifold; for related concepts see Hamiltonian (control theory) in control theory and Hamiltonian (quantum mechanics). In ''physics'' and ''chemistry'': * Molecular Hamiltonian In ''chemistry'': * Dyall Hamiltonian More specifically, as an adjective it is used in the phrases: In ''mathematical physics'': * Hamiltonian flow * Hamiltonian function * Hamiltonian mechanics in classical mechanics * Hamiltonian optics * Hamiltonian principle, see Hamilton's principle ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
William Rowan Hamilton
Sir William Rowan Hamilton (4 August 1805 – 2 September 1865) was an Irish astronomer, mathematician, and physicist who made numerous major contributions to abstract algebra, classical mechanics, and optics. His theoretical works and mathematical equations are considered fundamental to modern theoretical physics, particularly Hamiltonian mechanics, his reformulation of Lagrangian mechanics. His career included the analysis of geometrical optics, Fourier analysis, and quaternions, the last of which made him one of the founders of modern linear algebra. Hamilton was Andrews Professor of Astronomy at Trinity College Dublin. He was also the third director of Dunsink Observatory from 1827 to 1865. The Hamilton Institute at Maynooth University is named after him. Early life Hamilton was the fourth of nine children born to Sarah Hutton (1780–1817) and Archibald Hamilton (1778–1819), who lived in Dublin at 29 Dominick Street, Dublin, Dominick Street, later renumbered to 36. Ham ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hamiltonian Flow
Hamiltonian may refer to: * Hamiltonian mechanics, a function that represents the total energy of a system * Hamiltonian (quantum mechanics), an operator corresponding to the total energy of that system ** Dyall Hamiltonian, a modified Hamiltonian with two-electron nature ** Molecular Hamiltonian, the Hamiltonian operator representing the energy of the electrons and nuclei in a molecule * Hamiltonian (control theory), a function used to solve a problem of optimal control for a dynamical system * Hamiltonian path, a path in a graph that visits each vertex exactly once * Hamiltonian matrix, a matrix with certain special properties commonly used in linear algebra * Hamiltonian group, a non-abelian group the subgroups of which are all normal * Hamiltonian economic program, the economic policies advocated by Alexander Hamilton, the first United States Secretary of the Treasury See also * Alexander Hamilton (1755 or 1757–1804), American statesman and one of the Founding Fathers of the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hamiltonian Field Theory
In theoretical physics, Hamiltonian field theory is the field-theoretic analogue to classical Hamiltonian mechanics. It is a formalism in classical field theory alongside Lagrangian field theory. It also has applications in quantum field theory. Definition The Hamiltonian for a system of discrete particles is a function of their generalized coordinates and conjugate momenta, and possibly, time. For continua and fields, Hamiltonian mechanics is unsuitable but can be extended by considering a large number of point masses, and taking the continuous limit, that is, infinitely many particles forming a continuum or field. Since each point mass has one or more degrees of freedom, the field formulation has infinitely many degrees of freedom. One scalar field The Hamiltonian density is the continuous analogue for fields; it is a function of the fields, the conjugate "momentum" fields, and possibly the space and time coordinates themselves. For one scalar field , the Hamiltonian density ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hamiltonian Lattice Gauge Theory
In physics, Hamiltonian lattice gauge theory is a calculational approach to gauge theory and a special case of lattice gauge theory in which the space is discretized but time is not. The Hamiltonian is then re-expressed as a function of degrees of freedom defined on a d-dimensional lattice. Following Wilson, the spatial components of the vector potential are replaced with Wilson lines over the edges, but the time component is associated with the vertices. However, the temporal gauge is often employed, setting the electric potential to zero. The eigenvalues of the Wilson line operators U(e) (where e is the (oriented) edge in question) take on values on the Lie group G. It is assumed that G is compact, otherwise we run into many problems. The conjugate operator to U(e) is the electric field E(e) whose eigenvalues take on values in the Lie algebra \mathfrak. The Hamiltonian receives contributions coming from the plaquettes (the magnetic contribution) and contributions coming from t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hamiltonian Fluid Mechanics
Hamiltonian fluid mechanics is the application of Hamiltonian mechanics, Hamiltonian methods to fluid mechanics. Note that this formalism only applies to non-dissipative fluids. Irrotational barotropic flow Take the simple example of a barotropic, inviscid vorticity-free fluid. Then, the Conjugate variables, conjugate fields are the mass density field ''ρ'' and the velocity potential ''φ''. The Poisson bracket is given by :\=\delta^d(\vec-\vec) and the Hamiltonian by: :H=\int \mathrm^d x \mathcal=\int \mathrm^d x \left( \frac\rho(\nabla \varphi)^2 +e(\rho) \right), where ''e'' is the internal energy density, as a function of ''ρ''. For this barotropic flow, the internal energy is related to the pressure ''p'' by: :e'' = \fracp', where an apostrophe ('), denotes differentiation with respect to ''ρ''. This Hamiltonian structure gives rise to the following two equations of motion: : \begin \frac&=+\frac= -\nabla \cdot(\rho\vec), \\ \frac&=-\frac=-\frac\ve ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hamiltonian Constraint
The Hamiltonian constraint arises from any theory that admits a Hamiltonian formulation and is reparametrisation-invariant. The Hamiltonian constraint of general relativity is an important non-trivial example. In the context of general relativity, the Hamiltonian constraint technically refers to a linear combination of spatial and time diffeomorphism constraints reflecting the reparametrizability of the theory under both spatial as well as time coordinates. However, most of the time the term ''Hamiltonian constraint'' is reserved for the constraint that generates time diffeomorphisms. Simplest example: the parametrized clock and pendulum system Parametrization In its usual presentation, classical mechanics appears to give time a special role as an independent variable. This is unnecessary, however. Mechanics can be formulated to treat the time variable on the same footing as the other variables in an extended phase space, by parameterizing the temporal variable(s) in term ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quaternions
In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. The algebra of quaternions is often denoted by (for ''Hamilton''), or in blackboard bold by \mathbb H. Quaternions are not a field, because multiplication of quaternions is not, in general, commutative. Quaternions provide a definition of the quotient of two vectors in a three-dimensional space. Quaternions are generally represented in the form a + b\,\mathbf i + c\,\mathbf j +d\,\mathbf k, where the coefficients , , , are real numbers, and , are the ''basis vectors'' or ''basis elements''. Quaternions are used in pure mathematics, but also have practical uses in applied mathematics, particularly for calculations involving three-dimensional rotations, such as in three-dimensional computer graphics, computer vision, robotics, magnetic resonance imaging and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hamiltonian Matrix
In mathematics, a Hamiltonian matrix is a -by- matrix such that is symmetric, where is the skew-symmetric matrix :J = \begin 0_n & I_n \\ -I_n & 0_n \\ \end and is the -by- identity matrix. In other words, is Hamiltonian if and only if where denotes the transpose.. (Not to be confused with Hamiltonian (quantum mechanics)) Properties Suppose that the -by- matrix is written as the block matrix : A = \begin a & b \\ c & d \end where , , , and are -by- matrices. Then the condition that be Hamiltonian is equivalent to requiring that the matrices and are symmetric, and that .. Another equivalent condition is that is of the form with symmetric. It follows easily from the definition that the transpose of a Hamiltonian matrix is Hamiltonian. Furthermore, the sum (and any linear combination) of two Hamiltonian matrices is again Hamiltonian, as is their commutator. It follows that the space of all Hamiltonian matrices is a Lie algebra, denoted . The dimension of is . ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hamiltonian Group
In group theory, a Dedekind group is a group ''G'' such that every subgroup of ''G'' is normal. All abelian groups are Dedekind groups. A non-abelian Dedekind group is called a Hamiltonian group. The most familiar (and smallest) example of a Hamiltonian group is the quaternion group of order 8, denoted by Q8. Dedekind and Baer have shown (in the finite and respectively infinite order case) that every Hamiltonian group is a direct product of the form , where ''B'' is an elementary abelian 2-group, and ''D'' is a torsion abelian group with all elements of odd order. Dedekind groups are named after Richard Dedekind, who investigated them in , proving a form of the above structure theorem (for finite groups). He named the non-abelian ones after William Rowan Hamilton, the discoverer of quaternions. In 1898 George Miller delineated the structure of a Hamiltonian group in terms of its order and that of its subgroups. For instance, he shows "a Hamilton group of order 2''a'' has qua ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hamiltonian Path
In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle (or Hamiltonian circuit) is a cycle that visits each vertex exactly once. A Hamiltonian path that starts and ends at adjacent vertices can be completed by adding one more edge to form a Hamiltonian cycle, and removing any edge from a Hamiltonian cycle produces a Hamiltonian path. The computational problems of determining whether such paths and cycles exist in graphs are NP-complete; see Hamiltonian path problem for details. Hamiltonian paths and cycles are named after William Rowan Hamilton, who invented the icosian game, now also known as ''Hamilton's puzzle'', which involves finding a Hamiltonian cycle in the edge graph of the dodecahedron. Hamilton solved this problem using the icosian calculus, an algebraic structure based on roots of unity with many similarities to the quaternions (also ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hamiltonian System
A Hamiltonian system is a dynamical system governed by Hamilton's equations. In physics, this dynamical system describes the evolution of a physical system such as a planetary system or an electron in an electromagnetic field. These systems can be studied in both Hamiltonian mechanics and dynamical systems theory. Overview Informally, a Hamiltonian system is a mathematical formalism developed by William Rowan Hamilton, Hamilton to describe the evolution equation, evolution equations of a physical system. The advantage of this description is that it gives important insights into the dynamics, even if the initial value problem cannot be solved analytically. One example is the Three-body problem, planetary movement of three bodies: while there is no closed-form solution to the general problem, Henri Poincaré, Poincaré showed for the first time that it exhibits deterministic chaos. Formally, a Hamiltonian system is a dynamical system characterised by the scalar function H(\bol ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hamiltonian Principle
Hamiltonian may refer to: * Hamiltonian mechanics, a function that represents the total energy of a system * Hamiltonian (quantum mechanics), an operator corresponding to the total energy of that system ** Dyall Hamiltonian, a modified Hamiltonian with two-electron nature ** Molecular Hamiltonian, the Hamiltonian operator representing the energy of the electrons and nuclei in a molecule * Hamiltonian (control theory), a function used to solve a problem of optimal control for a dynamical system * Hamiltonian path, a path in a graph that visits each vertex exactly once * Hamiltonian matrix, a matrix with certain special properties commonly used in linear algebra * Hamiltonian group, a non-abelian group the subgroups of which are all normal * Hamiltonian economic program, the economic policies advocated by Alexander Hamilton, the first United States Secretary of the Treasury See also * Alexander Hamilton (1755 or 1757–1804), American statesman and one of the Founding Fathers of the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |