List Of Quantum Logic Gates
   HOME





List Of Quantum Logic Gates
In gate-based quantum computing, various sets of quantum logic gates are commonly used to express quantum operations. The following tables list several unitary quantum logic gates, together with their common name, how they are represented, and some of their properties. Controlled or conjugate transpose (adjoint) versions of some of these gates may not be listed. Identity gate and global phase The identity gate is the identity operation I, \psi\rangle=, \psi\rangle, most of the times this gate is not indicated in circuit diagrams, but it is useful when describing mathematical results. It has been described as being a "wait cycle", and a NOP. The global phase gate introduces a global phase e^ to the whole qubit quantum state. A quantum state is uniquely defined up to a phase. Because of the Born rule, a phase factor has no effect on a measurement outcome: , e^, =1 for any \varphi. Because e^, \psi\rangle \otimes , \phi\rangle = e^(, \psi\rangle \otimes , \phi\rangle), when ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Quantum Circuit
In quantum information theory, a quantum circuit is a model for quantum computation, similar to classical circuits, in which a computation is a sequence of quantum gates, measurements, initializations of qubits to known values, and possibly other actions. The minimum set of actions that a circuit needs to be able to perform on the qubits to enable quantum computation is known as DiVincenzo's criteria. Circuits are written such that the horizontal axis is time, starting at the left hand side and ending at the right. Horizontal lines are qubits, doubled lines represent classical bits. The items that are connected by these lines are operations performed on the qubits, such as measurements or gates. These lines define the sequence of events, and are usually not physical cables. The graphical depiction of quantum circuit elements is described using a variant of the Penrose graphical notation. Richard Feynman used an early version of the quantum circuit notation in 1986. Rever ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Measurement In Quantum Mechanics
In quantum physics, a measurement is the testing or manipulation of a physical system to yield a numerical result. A fundamental feature of quantum theory is that the predictions it makes are probabilistic. The procedure for finding a probability involves combining a quantum state, which mathematically describes a quantum system, with a mathematical representation of the measurement to be performed on that system. The formula for this calculation is known as the Born rule. For example, a quantum particle like an electron can be described by a quantum state that associates to each point in space a complex number called a probability amplitude. Applying the Born rule to these amplitudes gives the probabilities that the electron will be found in one region or another when an experiment is performed to locate it. This is the best the theory can do; it cannot say for certain where the electron will be found. The same quantum state can also be used to make a prediction of how the electro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Hadamard Transform
The Hadamard transform (also known as the Walsh–Hadamard transform, Hadamard–Rademacher–Walsh transform, Walsh transform, or Walsh–Fourier transform) is an example of a generalized class of Fourier transforms. It performs an orthogonal, symmetric, involutive, linear operation on real numbers (or complex, or hypercomplex numbers, although the Hadamard matrices themselves are purely real). The Hadamard transform can be regarded as being built out of size-2 discrete Fourier transforms (DFTs), and is in fact equivalent to a multidimensional DFT of size . It decomposes an arbitrary input vector into a superposition of Walsh functions. The transform is named for the French mathematician Jacques Hadamard (), the German-American mathematician Hans Rademacher, and the American mathematician Joseph L. Walsh. Definition The Hadamard transform ''H''''m'' is a 2''m'' × 2''m'' matrix, the Hadamard matrix (scaled by a normalization factor), that transforms 2''m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Pauli Group
In physics and mathematics, the Pauli group is a 16-element matrix group Matrix group The Pauli group consists of the 2 × 2 identity matrix I and all of the Pauli matrices :X = \sigma_1 = \begin 0&1\\ 1&0 \end,\quad Y = \sigma_2 = \begin 0&-i\\ i&0 \end,\quad Z = \sigma_3 = \begin 1&0\\ 0&-1 \end, together with the products of these matrices with the factors \pm 1 and \pm i: :G \ \stackrel\ \ \equiv \langle X, Y, Z \rangle. The Pauli group is Generating_set_of_a_group, generated by the Pauli matrices, and like them it is named after Wolfgang Pauli. As an abstract group, G \ \cong C_4 \circ D_4 is the central product of a cyclic group of order 4 and the dihedral group of order 8. The Pauli group is a group representation, representation of the Higher-dimensional gamma matrices, gamma group in three-dimensional Euclidean space. It is ''not'' isomorphic to the gamma group; it is less free, in that its chiral element is \sigma_1\sigma_2\sigma_3=iI whereas there ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Springer Science+Business Media
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second-largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, op ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Clifford Gates
In quantum computing and quantum information theory, the Clifford gates are the elements of the Clifford group, a set of mathematical transformations which normalize the ''n''-qubit Pauli group, i.e., map tensor products of Pauli matrices to tensor products of Pauli matrices through conjugation. The notion was introduced by Daniel Gottesman and is named after the mathematician William Kingdon Clifford. Quantum circuits that consist of only Clifford gates can be efficiently simulated with a classical computer due to the Gottesman–Knill theorem. The Clifford group is generated by three gates: Hadamard, phase gate ''S'', and CNOT. This set of gates is minimal in the sense that discarding any one gate results in the inability to implement some Clifford operations; removing the Hadamard gate disallows powers of / in the unitary matrix representation, removing the phase gate ''S'' disallows i in the unitary matrix, and removing the CNOT gate reduces the set of implementable ope ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]