HOME





List Of Algebraic Surfaces
This is a list of named algebraic surfaces, compact complex surfaces, and families thereof, sorted according to their Kodaira dimension following Enriques–Kodaira classification. Kodaira dimension −∞ Rational surfaces * Projective plane Quadric surfaces *Cone (geometry) *Cylinder *Ellipsoid *Hyperboloid *Paraboloid *Sphere *Spheroid Rational cubic surfaces * Cayley nodal cubic surface, a certain cubic surface with 4 nodes * Cayley's ruled cubic surface * Clebsch surface or Klein icosahedral surface * Fermat cubic * Monkey saddle * Parabolic conoid * Plücker's conoid * Whitney umbrella Rational quartic surfaces * Châtelet surfaces * Dupin cyclides, inversions of a cylinder, torus, or double cone in a sphere * Gabriel's horn * Right circular conoid * Roman surface or Steiner surface, a realization of the real projective plane in real affine space * Tori, surfaces of revolution generated by a circle about a coplanar axis Other rational surfaces in space * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Surface
In mathematics, an algebraic surface is an algebraic variety of dimension two. In the case of geometry over the field of complex numbers, an algebraic surface has complex dimension two (as a complex manifold, when it is non-singular) and so of dimension four as a smooth manifold. The theory of algebraic surfaces is much more complicated than that of algebraic curves (including the compact Riemann surfaces, which are genuine surfaces of (real) dimension two). Many results were obtained, but, in the Italian school of algebraic geometry , and are up to 100 years old. Classification by the Kodaira dimension In the case of dimension one, varieties are classified by only the topological genus, but, in dimension two, one needs to distinguish the arithmetic genus p_a and the geometric genus p_g because one cannot distinguish birationally only the topological genus. Then, irregularity is introduced for the classification of varieties. A summary of the results (in detail, for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fermat Cubic
In geometry, the Fermat cubic, named after Pierre de Fermat, is a surface defined by : x^3 + y^3 + z^3 = 1. \ Methods of algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ... provide the following parameterization of Fermat's cubic: : x(s,t) = : y(s,t) = : z(s,t) = . In projective space the Fermat cubic is given by :w^3+x^3+y^3+z^3=0. The 27 lines lying on the Fermat cubic are easy to describe explicitly: they are the 9 lines of the form (''w'' : ''aw'' : ''y'' : ''by'') where ''a'' and ''b'' are fixed numbers with cube −1, and their 18 conjugates under permutations of coordinates. ::::''Real points of Fermat cubic surface.'' References * * Algebraic surfaces {{algebraic-geometry-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boy's Surface
In geometry, Boy's surface is an immersion of the real projective plane in three-dimensional space. It was discovered in 1901 by the German mathematician Werner Boy, who had been tasked by his doctoral thesis advisor David Hilbert to prove that the projective plane ''could not'' be immersed in three-dimensional space. Boy's surface was first parametrized explicitly by Bernard Morin in 1978. Another parametrization was discovered by Rob Kusner and Robert Bryant.. Boy's surface is one of the two possible immersions of the real projective plane which have only a single triple point. Unlike the Roman surface and the cross-cap, it has no other singularities than self-intersections (that is, it has no pinch-points). Parametrization Boy's surface can be parametrized in several ways. One parametrization, discovered by Rob Kusner and Robert Bryant, is the following: given a complex number ''w'' whose magnitude is less than or equal to one ( \, w \, \le 1), let :\begin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Torus
In geometry, a torus (: tori or toruses) is a surface of revolution generated by revolving a circle in three-dimensional space one full revolution about an axis that is coplanarity, coplanar with the circle. The main types of toruses include ring toruses, horn toruses, and spindle toruses. A ring torus is sometimes colloquially referred to as a donut or doughnut. If the axis of revolution does not touch the circle, the surface has a ring shape and is called a torus of revolution, also known as a ring torus. If the axis of revolution is tangent to the circle, the surface is a horn torus. If the axis of revolution passes twice through the circle, the surface is a Lemon (geometry), spindle torus (or ''self-crossing torus'' or ''self-intersecting torus''). If the axis of revolution passes through the center of the circle, the surface is a degenerate torus, a double-covered sphere. If the revolved curve is not a circle, the surface is called a ''toroid'', as in a square toroid. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Affine Space
In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related to parallelism and ratio of lengths for parallel line segments. Affine space is the setting for affine geometry. As in Euclidean space, the fundamental objects in an affine space are called '' points'', which can be thought of as locations in the space without any size or shape: zero-dimensional. Through any pair of points an infinite straight line can be drawn, a one-dimensional set of points; through any three points that are not collinear, a two-dimensional plane can be drawn; and, in general, through points in general position, a -dimensional flat or affine subspace can be drawn. Affine space is characterized by a notion of pairs of parallel lines that lie within the same plane but never meet each-other (non-parallel lines wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Real Projective Plane
In mathematics, the real projective plane, denoted or , is a two-dimensional projective space, similar to the familiar Euclidean plane in many respects but without the concepts of distance, circles, angle measure, or parallelism. It is the setting for planar projective geometry, in which the relationships between objects are not considered to change under projective transformations. The name ''projective'' comes from perspective drawing: projecting an image from one plane onto another as viewed from a point outside either plane, for example by photographing a flat painting from an oblique angle, is a projective transformation. The fundamental objects in the projective plane are points and straight lines, and as in Euclidean geometry, every pair of points determines a unique line passing through both, but unlike in the Euclidean case in projective geometry every pair of lines also determines a unique point at their intersection (in Euclidean geometry, parallel lines never in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Roman Surface
In mathematics, the Roman surface or Steiner surface is a self-intersecting mapping of the real projective plane into three-dimensional space, with an unusually high degree of symmetry. This mapping is not an immersion of the projective plane; however, the figure resulting from removing six singular points is one. Its name arises because it was discovered by Jakob Steiner when he was in Rome in 1844. The simplest construction is as the image of a sphere centered at the origin under the map f(x,y,z)=(yz,xz,xy). This gives an implicit formula of : x^2 y^2 + y^2 z^2 + z^2 x^2 - r^2 x y z = 0. \, Also, taking a parametrization of the sphere in terms of longitude () and latitude (), gives parametric equations for the Roman surface as follows: :x=r^ \cos \theta \cos \varphi \sin \varphi :y=r^ \sin \theta \cos \varphi \sin \varphi :z=r^ \cos \theta \sin \theta \cos^ \varphi The origin is a triple point, and each of the -, -, and -planes are tangential to the surface there. The ot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dupin Cyclide
In mathematics, a Dupin cyclide or cyclide of Dupin is any Inversive geometry, geometric inversion of a standard torus, Cylinder (geometry), cylinder or cone, double cone. In particular, these latter are themselves examples of Dupin cyclides. They were discovered by (and named after) Charles Dupin, while he was still a student at the École polytechnique following Gaspard Monge's lectures. The key property of a Dupin cyclide is that it is a channel surface (envelope of a one-parameter family of spheres) in two different ways. This property means that Dupin cyclides are natural objects in Lie sphere geometry. Dupin cyclides are often simply known as ''cyclides'', but the latter term is also used to refer to a more general class of quartic surfaces which are important in the theory of separation of variables for the Laplace equation in three dimensions. Dupin cyclides were investigated not only by Dupin, but also by Arthur Cayley, A. Cayley, James Clerk Maxwell, J.C. Maxwell and Ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Châtelet Surface
In algebraic geometry, a Châtelet surface is a rational surface In algebraic geometry, a branch of mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sc ... studied by given by an equation :y^2-az^2=P(x), \, where ''P'' has degree 3 or 4. They are conic bundles. References * * {{DEFAULTSORT:Chatelet Surface Algebraic surfaces Complex surfaces ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quartic Surface
In mathematics, especially in algebraic geometry, a quartic surface is a surface defined by an equation of degree 4. More specifically there are two closely related types of quartic surface: affine and projective. An ''affine'' quartic surface is the solution set of an equation of the form :f(x,y,z)=0\ where is a polynomial of degree 4, such as . This is a surface in affine space . On the other hand, a projective quartic surface is a surface in projective space of the same form, but now is a ''homogeneous'' polynomial of 4 variables of degree 4, so for example . If the base field is or the surface is said to be '' real'' or ''complex'' respectively. One must be careful to distinguish between algebraic Riemann surfaces, which are in fact quartic curves over , and quartic surfaces over . For instance, the Klein quartic is a ''real'' surface given as a quartic curve over . If on the other hand the base field is finite, then it is said to be an ''arithmetic quartic surfac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Whitney Umbrella
image:Whitney_unbrella.png, frame, Section of the surface In geometry, the Whitney umbrella or Whitney's umbrella, named after American mathematician Hassler Whitney, and sometimes called a Cayley umbrella, is a specific self-intersecting ruled surface placed in Three-dimensional space, three dimensions. It is the Union (set theory), union of all straight lines that pass through points of a fixed parabola and are perpendicular to a fixed straight line which is parallel to the axis of the parabola and lies on its perpendicular Bisection, bisecting plane. Formulas Whitney's umbrella can be given by the parametric equations in Cartesian coordinates : \left\{\begin{align} x(u, v) &= uv, \\ y(u, v) &= u, \\ z(u, v) &= v^2, \end{align}\right. where the parameters ''u'' and ''v'' range over the real numbers. It is also given by the implicit function, implicit equation : x^2 - y^2 z = 0. This formula also includes the negative ''z'' axis (which is called the ''handle'' of the umbrel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]