Liouvillian Function
In mathematics, the Liouvillian functions comprise a set of functions including the elementary functions and their repeated integrals. Liouvillian functions can be recursively defined as integrals of other Liouvillian functions. More explicitly, a Liouvillian function is a function of one variable which is the composition of a finite number of arithmetic operations , exponentials, constants, solutions of algebraic equations (a generalization of ''n''th roots), and antiderivatives. The logarithm function does not need to be explicitly included since it is the integral of 1/x. It follows directly from the definition that the set of Liouvillian functions is closed under arithmetic operations, composition, and integration. It is also closed under differentiation. It is not closed under limits and infinite sums. Liouvillian functions were introduced by Joseph Liouville in a series of papers from 1833 to 1841. Examples All elementary functions are Liouvillian. Examples of ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Series (mathematics)
In mathematics, a series is, roughly speaking, an addition of Infinity, infinitely many Addition#Terms, terms, one after the other. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures in combinatorics through generating functions. The mathematical properties of infinite series make them widely applicable in other quantitative disciplines such as physics, computer science, statistics and finance. Among the Ancient Greece, Ancient Greeks, the idea that a potential infinity, potentially infinite summation could produce a finite result was considered paradoxical, most famously in Zeno's paradoxes. Nonetheless, infinite series were applied practically by Ancient Greek mathematicians including Archimedes, for instance in the Quadrature of the Parabola, quadrature of the parabola. The mathematical side of Zeno's paradoxes was resolved using the concept of a limit ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Differential Algebra
In mathematics, differential algebra is, broadly speaking, the area of mathematics consisting in the study of differential equations and differential operators as algebraic objects in view of deriving properties of differential equations and operators without computing the solutions, similarly as polynomial algebras are used for the study of algebraic varieties, which are solution sets of systems of polynomial equations. Weyl algebras and Lie algebras may be considered as belonging to differential algebra. More specifically, ''differential algebra'' refers to the theory introduced by Joseph Ritt in 1950, in which differential rings, differential fields, and differential algebras are rings, fields, and algebras equipped with finitely many derivations. A natural example of a differential field is the field of rational functions in one variable over the complex numbers, \mathbb(t), where the derivation is differentiation with respect to t. More generally, every differential e ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Zeta Function
In mathematics, a zeta function is (usually) a function analogous to the original example, the Riemann zeta function : \zeta(s) = \sum_^\infty \frac 1 . Zeta functions include: * Airy zeta function, related to the zeros of the Airy function * Arakawa–Kaneko zeta function * Arithmetic zeta function * Artin–Mazur zeta function of a dynamical system * Barnes zeta function or double zeta function * Beurling zeta function of Beurling generalized primes * Dedekind zeta function of a number field * Duursma zeta function of error-correcting codes * Epstein zeta function of a quadratic form * Goss zeta function of a function field * Hasse–Weil zeta function of a variety * Height zeta function of a variety * Hurwitz zeta function, a generalization of the Riemann zeta function * Igusa zeta function * Ihara zeta function of a graph * ''L''-function, a "twisted" zeta function * Lefschetz zeta function of a morphism * Lerch zeta function, a generalization of the Riemann zeta funct ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Gamma Function
In mathematics, the gamma function (represented by Γ, capital Greek alphabet, Greek letter gamma) is the most common extension of the factorial function to complex numbers. Derived by Daniel Bernoulli, the gamma function \Gamma(z) is defined for all complex numbers z except non-positive integers, and for every positive integer z=n, \Gamma(n) = (n-1)!\,.The gamma function can be defined via a convergent improper integral for complex numbers with positive real part: \Gamma(z) = \int_0^\infty t^ e^\textt, \ \qquad \Re(z) > 0\,.The gamma function then is defined in the complex plane as the analytic continuation of this integral function: it is a meromorphic function which is holomorphic function, holomorphic except at zero and the negative integers, where it has simple Zeros and poles, poles. The gamma function has no zeros, so the reciprocal gamma function is an entire function. In fact, the gamma function corresponds to the Mellin transform of the negative exponential functi ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Transcendentally Transcendental Function
A hypertranscendental function or transcendentally transcendental function is a transcendental analytic function which is not the solution of an algebraic differential equation with coefficients in \mathbb (the integers) and with algebraic initial conditions. History The term 'transcendentally transcendental' was introduced by E. H. Moore in 1896; the term 'hypertranscendental' was introduced by D. D. Morduhai-Boltovskoi in 1914. Definition One standard definition (there are slight variants) defines solutions of differential equations of the form :F\left(x, y, y', \cdots, y^ \right) = 0, where F is a polynomial with constant coefficients, as ''algebraically transcendental'' or ''differentially algebraic''. Transcendental functions which are not ''algebraically transcendental'' are ''transcendentally transcendental''. Hölder's theorem shows that the gamma function is in this category.Lee A. Rubel, "A Survey of Transcendentally Transcendental Functions", ''The American Mathe ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Hypergeometric Function
In mathematics, the Gaussian or ordinary hypergeometric function 2''F''1(''a'',''b'';''c'';''z'') is a special function represented by the hypergeometric series, that includes many other special functions as specific or limiting cases. It is a solution of a second-order linear ordinary differential equation (ODE). Every second-order linear ODE with three regular singular points can be transformed into this equation. For systematic lists of some of the many thousands of published identities involving the hypergeometric function, see the reference works by and . There is no known system for organizing all of the identities; indeed, there is no known algorithm that can generate all identities; a number of different algorithms are known that generate different series of identities. The theory of the algorithmic discovery of identities remains an active research topic. History The term "hypergeometric series" was first used by John Wallis in his 1655 book ''Arithmetica Infinitor ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Bessel Function
Bessel functions, named after Friedrich Bessel who was the first to systematically study them in 1824, are canonical solutions of Bessel's differential equation x^2 \frac + x \frac + \left(x^2 - \alpha^2 \right)y = 0 for an arbitrary complex number \alpha, which represents the ''order'' of the Bessel function. Although \alpha and -\alpha produce the same differential equation, it is conventional to define different Bessel functions for these two values in such a way that the Bessel functions are mostly smooth functions of \alpha. The most important cases are when \alpha is an integer or half-integer. Bessel functions for integer \alpha are also known as cylinder functions or the cylindrical harmonics because they appear in the solution to Laplace's equation in cylindrical coordinates. Spherical Bessel functions with half-integer \alpha are obtained when solving the Helmholtz equation in spherical coordinates. Applications Bessel's equation arises when finding separa ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Algebraic Differential Equation
In mathematics, an algebraic differential equation is a differential equation that can be expressed by means of differential algebra. There are several such notions, according to the concept of differential algebra used. The intention is to include equations formed by means of differential operators, in which the coefficients are rational functions of the variables (e.g. the hypergeometric equation). Algebraic differential equations are widely used in computer algebra and number theory. A simple concept is that of a polynomial vector field, in other words a vector field expressed with respect to a standard co-ordinate basis as the first partial derivatives with polynomial coefficients. This is a type of first-order algebraic differential operator. Formulations *Derivations ''D'' can be used as algebraic analogues of the formal part of differential calculus, so that algebraic differential equations make sense in commutative rings. *The theory of differential fields was set u ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Fresnel Integral
250px, Plots of and . The maximum of is about . If the integrands of and were defined using instead of , then the image would be scaled vertically and horizontally (see below). The Fresnel integrals and are two transcendental functions named after Augustin-Jean Fresnel that are used in optics and are closely related to the error function (). They arise in the description of near-field Fresnel diffraction phenomena and are defined through the following integral representations: S(x) = \int_0^x \sin\left(t^2\right)\,dt, \quad C(x) = \int_0^x \cos\left(t^2\right)\,dt. The parametric curve is the Euler spiral or clothoid, a curve whose curvature varies linearly with arclength. The term Fresnel integral may also refer to the complex definite integral \int_^\infty e^ dx = \sqrte^ where is real and positive; this can be evaluated by closing a contour in the complex plane and applying Cauchy's integral theorem. Definition 250px, Fresnel integrals with arguments in ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Logarithmic Integral
In mathematics, the logarithmic integral function or integral logarithm li(''x'') is a special function. It is relevant in problems of physics and has number theoretic significance. In particular, according to the prime number theorem, it is a very good approximation to the prime-counting function, which is defined as the number of prime numbers less than or equal to a given value . Integral representation The logarithmic integral has an integral representation defined for all positive real numbers ≠ 1 by the definite integral : \operatorname(x) = \int_0^x \frac. Here, denotes the natural logarithm. The function has a singularity at , and the integral for is interpreted as a Cauchy principal value, : \operatorname(x) = \lim_ \left( \int_0^ \frac + \int_^x \frac \right). Offset logarithmic integral The offset logarithmic integral or Eulerian logarithmic integral is defined as : \operatorname(x) = \int_2^x \frac = \operatorname(x) - \operatorname(2). ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Exponential Integral
In mathematics, the exponential integral Ei is a special function on the complex plane. It is defined as one particular definite integral of the ratio between an exponential function and its argument. Definitions For real non-zero values of ''x'', the exponential integral Ei(''x'') is defined as : \operatorname(x) = -\int_^\infty \fract\,dt = \int_^x \fract\,dt. The Risch algorithm shows that Ei is not an elementary function. The definition above can be used for positive values of ''x'', but the integral has to be understood in terms of the Cauchy principal value due to the singularity of the integrand at zero. For complex values of the argument, the definition becomes ambiguous due to branch points at 0 and Instead of Ei, the following notation is used, :E_1(z) = \int_z^\infty \frac\, dt,\qquad, (z), 0. Properties Several properties of the exponential integral below, in certain cases, allow one to avoid its explicit evaluation through the definition ab ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |