HOME



picture info

Less Than
In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. It is used most often to compare two numbers on the number line by their size. The main types of inequality are less than and greater than (denoted by and , respectively the less-than sign, less-than and greater-than sign, greater-than signs). Notation There are several different notations used to represent different kinds of inequalities: * The notation ''a'' ''b'' means that ''a'' is greater than ''b''. In either case, ''a'' is not equal to ''b''. These relations are known as strict inequalities, meaning that ''a'' is strictly less than or strictly greater than ''b''. Equality is excluded. In contrast to strict inequalities, there are two types of inequality relations that are not strict: * The notation ''a'' ≤ ''b'' or ''a'' ⩽ ''b'' or ''a'' ≦ ''b'' means that ''a'' is less than or equal to ''b'' (or, equivalently, at most ''b'', or no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Programming Feasible Region
In mathematics, the term ''linear'' is used in two distinct senses for two different properties: * linearity of a ''function (mathematics), function'' (or ''mapping (mathematics), mapping''); * linearity of a ''polynomial''. An example of a linear function is the function defined by f(x)=(ax,bx) that maps the real line to a line in the Euclidean plane R2 that passes through the origin. An example of a linear polynomial in the variables X, Y and Z is aX+bY+cZ+d. Linearity of a mapping is closely related to ''Proportionality (mathematics), proportionality''. Examples in physics include the linear relationship of voltage and Electric current, current in an electrical conductor (Ohm's law), and the relationship of mass and weight. By contrast, more complicated relationships, such as between velocity and kinetic energy, are ''Nonlinear system, nonlinear''. Generalized for functions in more than one dimension (mathematics), dimension, linearity means the property of a function of b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Addition
Addition (usually signified by the Plus and minus signs#Plus sign, plus symbol, +) is one of the four basic Operation (mathematics), operations of arithmetic, the other three being subtraction, multiplication, and Division (mathematics), division. The addition of two Natural number, whole numbers results in the total or ''summation, sum'' of those values combined. For example, the adjacent image shows two columns of apples, one with three apples and the other with two apples, totaling to five apples. This observation is expressed as , which is read as "three plus two Equality (mathematics), equals five". Besides counting items, addition can also be defined and executed without referring to concrete objects, using abstractions called numbers instead, such as integers, real numbers, and complex numbers. Addition belongs to arithmetic, a branch of mathematics. In algebra, another area of mathematics, addition can also be performed on abstract objects such as Euclidean vector, vec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Chained Notation
Chained may refer to: * ''Chained'' (1934 film), starring Joan Crawford and Clark Gable * ''Chained'' (2012 film), a Canadian film directed by Jennifer Lynch * ''Chained'' (2020 film), a Canadian film directed by Titus Heckel * "Chained" (Marvin Gaye song), 1968 * "Chained" (The xx song), 2012 * ''Chained'', a 2008 album by Crystal Eyes * "Chained", a 1974 song by Rare Earth See also * Chain (other) A chain is a series of connected links which are typically made of metal. Chain may also refer to: Accessories and apparel * Chain mail, a type of armor made of interlocking chain links * Jewellery chain (or necklace), a type of jewelry which i ...
{{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Negative Number
In mathematics, a negative number is the opposite (mathematics), opposite of a positive real number. Equivalently, a negative number is a real number that is inequality (mathematics), less than 0, zero. Negative numbers are often used to represent the Magnitude (mathematics), magnitude of a loss or deficiency. A debt that is owed may be thought of as a negative asset. If a quantity, such as the charge on an electron, may have either of two opposite senses, then one may choose to distinguish between those senses—perhaps arbitrarily—as ''positive'' and ''negative''. Negative numbers are used to describe values on a scale that goes below zero, such as the Celsius and Fahrenheit scales for temperature. The laws of arithmetic for negative numbers ensure that the common-sense idea of an opposite is reflected in arithmetic. For example, −(−3) = 3 because the opposite of an opposite is the original value. Negative numbers are usually written with a Plus and minus signs, minus sig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Positive Number
In mathematics, the sign of a real number is its property of being either positive, negative, or 0. Depending on local conventions, zero may be considered as having its own unique sign, having no sign, or having both positive and negative sign. In some contexts, it makes sense to distinguish between a positive and a negative zero. In mathematics and physics, the phrase "change of sign" is associated with exchanging an object for its additive inverse (multiplication with −1, negation), an operation which is not restricted to real numbers. It applies among other objects to vectors, matrices, and complex numbers, which are not prescribed to be only either positive, negative, or zero. The word "sign" is also often used to indicate binary aspects of mathematical or scientific objects, such as odd and even ( sign of a permutation), sense of orientation or rotation ( cw/ccw), one sided limits, and other concepts described in below. Sign of a number Numbers from various number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Multiplicative Inverse
In mathematics, a multiplicative inverse or reciprocal for a number ''x'', denoted by 1/''x'' or ''x''−1, is a number which when Multiplication, multiplied by ''x'' yields the multiplicative identity, 1. The multiplicative inverse of a rational number, fraction ''a''/''b'' is ''b''/''a''. For the multiplicative inverse of a real number, divide 1 by the number. For example, the reciprocal of 5 is one fifth (1/5 or 0.2), and the reciprocal of 0.25 is 1 divided by 0.25, or 4. The reciprocal function, the Function (mathematics), function ''f''(''x'') that maps ''x'' to 1/''x'', is one of the simplest examples of a function which is its own inverse (an Involution (mathematics), involution). Multiplying by a number is the same as Division (mathematics), dividing by its reciprocal and vice versa. For example, multiplication by 4/5 (or 0.8) will give the same result as division by 5/4 (or 1.25). Therefore, multiplication by a number followed by multiplication by its reciprocal yie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Additive Inverse
In mathematics, the additive inverse of an element , denoted , is the element that when added to , yields the additive identity, 0 (zero). In the most familiar cases, this is the number 0, but it can also refer to a more generalized zero element. In elementary mathematics, the additive inverse is often referred to as the opposite number, or its negative. The unary operation of arithmetic negation is closely related to '' subtraction'' and is important in solving algebraic equations. Not all sets where addition is defined have an additive inverse, such as the natural numbers. Common examples When working with integers, rational numbers, real numbers, and complex numbers, the additive inverse of any number can be found by multiplying it by −1. The concept can also be extended to algebraic expressions, which is often used when balancing equations. Relation to subtraction The additive inverse is closely related to subtraction, which can be viewed as an add ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ordered Fields
Order, ORDER or Orders may refer to: * A socio-political or established or existing order, e.g. World order, Ancien Regime, Pax Britannica * Categorization, the process in which ideas and objects are recognized, differentiated, and understood * Heterarchy, a system of organization wherein the elements have the potential to be ranked a number of different ways * Hierarchy, an arrangement of items that are represented as being "above", "below", or "at the same level as" one another * an action or inaction that must be obeyed, mandated by someone in authority People * Orders (surname) Arts, entertainment, and media * ''Order'' (film), a 2005 Russian film * ''Order'' (album), a 2009 album by Maroon * "Order", a 2016 song from '' Brand New Maid'' by Band-Maid * ''Orders'' (1974 film), a film by Michel Brault * "Orders" (''Star Wars: The Clone Wars'') Business * Blanket order, a purchase order to allow multiple delivery dates over a period of time * Money order or postal order ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ordered Field
In mathematics, an ordered field is a field together with a total ordering of its elements that is compatible with the field operations. Basic examples of ordered fields are the rational numbers and the real numbers, both with their standard orderings. Every subfield of an ordered field is also an ordered field in the inherited order. Every ordered field contains an ordered subfield that is isomorphic to the rational numbers. Every Dedekind-complete ordered field is isomorphic to the reals. Squares are necessarily non-negative in an ordered field. This implies that the complex numbers cannot be ordered since the square of the imaginary unit ''i'' is (which is negative in any ordered field). Finite fields cannot be ordered. Historically, the axiomatization of an ordered field was abstracted gradually from the real numbers, by mathematicians including David Hilbert, Otto Hölder and Hans Hahn. This grew eventually into the Artin–Schreier theory of ordered fields and f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Division (mathematics)
Division is one of the four basic operations of arithmetic. The other operations are addition, subtraction, and multiplication. What is being divided is called the ''dividend'', which is divided by the ''divisor'', and the result is called the ''quotient''. At an elementary level the division of two natural numbers is, among other Quotition and partition, possible interpretations, the process of calculating the number of times one number is contained within another. For example, if 20 apples are divided evenly between 4 people, everyone receives 5 apples (see picture). However, this number of times or the number contained (divisor) need not be integers. The division with remainder or Euclidean division of two natural numbers provides an integer ''quotient'', which is the number of times the second number is completely contained in the first number, and a ''remainder'', which is the part of the first number that remains, when in the course of computing the quotient, no further ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Multiplication
Multiplication is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division (mathematics), division. The result of a multiplication operation is called a ''Product (mathematics), product''. Multiplication is often denoted by the cross symbol, , by the mid-line dot operator, , by juxtaposition, or, in programming languages, by an asterisk, . The multiplication of whole numbers may be thought of as repeated addition; that is, the multiplication of two numbers is equivalent to adding as many copies of one of them, the ''multiplicand'', as the quantity of the other one, the ''multiplier''; both numbers can be referred to as ''factors''. This is to be distinguished from term (arithmetic), ''terms'', which are added. :a\times b = \underbrace_ . Whether the first factor is the multiplier or the multiplicand may be ambiguous or depend upon context. For example, the expression 3 \times 4 , can be phrased as "3 ti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inversion Of Less-than-relation By Multiplication With Negative Number
Inversion or inversions may refer to: Arts * ''Inversion'' (artwork), a 2005 temporary sculpture in Houston, Texas * Inversion (music), a term with various meanings in music theory and musical set theory * ''Inversions'' (novel) by Iain M. Banks * ''Inversion'' (video game), a 2012 third person shooter for Xbox 360, PlayStation 3, and PC * ''Inversions'' (EP), the 2014 extended play album by American rock music ensemble The Colourist * ''Inversions'' (album), a 2019 album by Belinda O'Hooley * ''Inversion'' (film), a 2016 Iranian film Linguistics and language * Inversion (linguistics), grammatical constructions where two expressions switch their order of appearance * Inversion (prosody), the reversal of the order of a foot's elements in poetry * Anastrophe, a figure of speech also known as an ''inversion'' Mathematics and logic * Additive inverse * Involution (mathematics), a function that is its own inverse (when applied twice, the starting value is obtained) * Inversi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]