Leray's Theorem
   HOME





Leray's Theorem
In algebraic topology and algebraic geometry, Leray's theorem (so named after Jean Leray) relates abstract sheaf cohomology with ÄŒech cohomology. Let \mathcal F be a sheaf on a topological space X and \mathcal U an open cover In mathematics, and more particularly in set theory, a cover (or covering) of a set X is a family of subsets of X whose union is all of X. More formally, if C = \lbrace U_\alpha : \alpha \in A \rbrace is an indexed family of subsets U_\alpha\su ... of X. If \mathcal F is acyclic on every finite intersection of elements of \mathcal U (meaning that H^i(U_1 \cap \dots \cap U_p, \mathcal) = 0 for all i \ge 1 and all U_1, \dots, U_p \in \mathcal), then : \check H^q(\mathcal U,\mathcal F)= H^q(X,\mathcal F), where \check H^q(\mathcal U,\mathcal F) is the q-th ÄŒech cohomology group of \mathcal F with respect to the open cover \mathcal U. References * Bonavero, Laurent. ''Cohomology of Line Bundles on Toric Varieties, Vanishing Theorems.'' Lectu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up to homeomorphism, though usually most classify up to Homotopy#Homotopy equivalence and null-homotopy, homotopy equivalence. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group. Main branches Below are some of the main areas studied in algebraic topology: Homotopy groups In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy groups record information ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects. The fundamental objects of study in algebraic geometry are algebraic variety, algebraic varieties, which are geometric manifestations of solution set, solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are line (geometry), lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscate of Bernoulli, lemniscates and Cassini ovals. These are plane algebraic curves. A point of the plane lies on an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of points of special interest like singular point of a curve, singular p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jean Leray
Jean Leray (; 7 November 1906 – 10 November 1998) was a French mathematician, who worked on both partial differential equations and algebraic topology. Life and career He was born in Chantenay-sur-Loire (today part of Nantes). He studied at École Normale Supérieure from 1926 to 1929. He received his Ph.D. in 1933. In 1934 Leray published an important paper that founded the study of weak solutions of the Navier–Stokes equations. In the same year, he and Juliusz Schauder discovered a topological invariant, now called the Leray–Schauder degree, which they applied to prove the existence of solutions for partial differential equations lacking uniqueness. From 1938 to 1939 he was professor at the University of Nancy. He did not join the Bourbaki group, although he was close with its founders. His main work in topology was carried out while he was a prisoner of war in a camp in Edelbach, Austria from 1940 to 1945. He concealed his expertise on differential equations, fearing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sheaf Cohomology
In mathematics, sheaf cohomology is the application of homological algebra to analyze the global sections of a sheaf on a topological space. Broadly speaking, sheaf cohomology describes the obstructions (holes) to solving a geometric problem globally when it can be solved locally. The central work for the study of sheaf cohomology is Grothendieck's 1957 Tôhoku paper. Sheaves, sheaf cohomology, and spectral sequences were introduced by Jean Leray at the prisoner-of-war camp Oflag XVII-A in Austria. From 1940 to 1945, Leray and other prisoners organized a "université en captivité" in the camp. Leray's definitions were simplified and clarified in the 1950s. It became clear that sheaf cohomology was not only a new approach to cohomology in algebraic topology, but also a powerful method in complex analytic geometry and algebraic geometry. These subjects often involve constructing global functions with specified local properties, and sheaf cohomology is ideally suited to such ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

ÄŒech Cohomology
In mathematics, specifically algebraic topology, ÄŒech cohomology is a cohomology theory based on the intersection properties of open set, open cover (topology), covers of a topological space. It is named for the mathematician Eduard ÄŒech. Motivation Let ''X'' be a topological space, and let \mathcal be an open cover of ''X''. Let N(\mathcal) denote the nerve of a covering, nerve of the covering. The idea of ÄŒech cohomology is that, for an open cover \mathcal consisting of sufficiently small open sets, the resulting simplicial complex N(\mathcal) should be a good combinatorial model for the space ''X''. For such a cover, the ÄŒech cohomology of ''X'' is defined to be the simplicial homology, simplicial cohomology of the nerve. This idea can be formalized by the notion of a good cover. However, a more general approach is to take the direct limit of the cohomology groups of the nerve over the system of all possible open covers of ''X'', ordered by Open cover#Refinement, refinement ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sheaf (mathematics)
In mathematics, a sheaf (: sheaves) is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data are well-behaved in that they can be restricted to smaller open sets, and also the data assigned to an open set are equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set (intuitively, every datum is the sum of its constituent data). The field of mathematics that studies sheaves is called sheaf theory. Sheaves are understood conceptually as general and abstract objects. Their precise definition is rather technical. They are specifically defined as sheaves of sets or as sheaves of rings, for example, depending on the type of data assigned to the open sets. There are also maps (or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Topological Space
In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a topological space is a Set (mathematics), set whose elements are called Point (geometry), points, along with an additional structure called a topology, which can be defined as a set of Neighbourhood (mathematics), neighbourhoods for each point that satisfy some Axiom#Non-logical axioms, axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate. A topological space is the most general type of a space (mathematics), mathematical space that allows for the definition of Limit (mathematics), limits, Continuous function (topology), continuity, and Connected space, connectedness. Common types ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Open Cover
In mathematics, and more particularly in set theory, a cover (or covering) of a set X is a family of subsets of X whose union is all of X. More formally, if C = \lbrace U_\alpha : \alpha \in A \rbrace is an indexed family of subsets U_\alpha\subset X (indexed by the set A), then C is a cover of X if \bigcup_U_ = X. Thus the collection \lbrace U_\alpha : \alpha \in A \rbrace is a cover of X if each element of X belongs to at least one of the subsets U_. Definition Covers are commonly used in the context of topology. If the set X is a topological space, then a cover C of X is a collection of subsets \_ of X whose union is the whole space X = \bigcup_U_. In this case C is said to cover X, or that the sets U_\alpha cover X. If Y is a (topological) subspace of X, then a cover of Y is a collection of subsets C = \_ of X whose union contains Y. That is, C is a cover of Y if Y \subseteq \bigcup_U_. Here, Y may be covered with either sets in Y itself or sets in the parent spa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Acyclic Sheaf
In mathematics, injective sheaves of abelian groups are used to construct the resolutions needed to define sheaf cohomology (and other derived functors, such as sheaf Ext). There is a further group of related concepts applied to sheaves: flabby (''flasque'' in French), fine, soft (''mou'' in French), acyclic. In the history of the subject they were introduced before the 1957 " Tohoku paper" of Alexander Grothendieck, which showed that the abelian category notion of ''injective object'' sufficed to found the theory. The other classes of sheaves are historically older notions. The abstract framework for defining cohomology and derived functors does not need them. However, in most concrete situations, resolutions by acyclic sheaves are often easier to construct. Acyclic sheaves therefore serve for computational purposes, for example the Leray spectral sequence. Injective sheaves An injective sheaf \mathcal is a sheaf that is an injective object of the category of abelian sheaves; ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sheaf Theory
In mathematics, a sheaf (: sheaves) is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data are well-behaved in that they can be restricted to smaller open sets, and also the data assigned to an open set are equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set (intuitively, every datum is the sum of its constituent data). The field of mathematics that studies sheaves is called sheaf theory. Sheaves are understood conceptually as general and abstract objects. Their precise definition is rather technical. They are specifically defined as sheaves of sets or as sheaves of rings, for example, depending on the type of data assigned to the open sets. There are also maps (or mor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theorems In Algebraic Geometry
In mathematics and formal logic, a theorem is a statement that has been proven, or can be proven. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In mainstream mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice (ZFC), or of a less powerful theory, such as Peano arithmetic. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and ''corollary'' for less important theorems. In mathematical logic, the concepts of theorems and proofs have been formalized in order to allow mathematical reason ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]