HOME



picture info

Lead Burning
Lead burning is a welding process used to join lead sheet. It is a manual process carried out by gas welding, usually oxy-acetylene. Uses Lead burning is carried out for roofing work in sheet lead, or for the formation of custom-made rainwater goods: gutters, downspouts and decorative hoppers. Decorative leadworking may also use lead burning, particularly where a waterproof joint is required as for planters. Lead burning is thus part of traditional plumber's work, in its original sense of a worker in lead (Latin: '' plumbum''). Although rare and specialised, this work is still carried out today and not just for restoration of historical buildings. Most lead sheet work is formed and sealed by bossing, a mechanical fold or crimp. This is adequate for roofing that sheds water, but is insufficiently watertight when standing water sits upon it and so an impermeable burned joint is needed. Lead burning is ''not'' used as part of plumbing work for installed pipework. Lead piping has ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Filler Rod
A filler metal is a metal added in the making of a joint through welding, brazing, or soldering. Soldering Soldering and brazing processes rely on a filler metal added to the joint to form the junction between the base metal parts. Soft soldering uses a filler that melts at a lower temperature than the workpiece, often a lead-tin solder alloy. Brazing and hard soldering use a higher temperature filler that melts at a temperature which may approach that of the base metal, and which may form a eutectic alloy with the base metal. Filler alloys have a lower melting point than the base metal, so that the joint may be made by bringing the whole assembly up to temperature without everything melting as one. Complex joints, typically for jewelry or live steam boilermaking, may be made in stages, with filler metals of progressively lower melting points used in turn. Early joints are thus not destroyed by heating to the later temperatures. Welding Welding processes work around the melting ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lead(II) Oxide
Lead(II) oxide, also called lead monoxide, is the inorganic compound with the molecular formula lead, Pboxide, O. PbO occurs in two Polymorphism (materials science), polymorphs: litharge having a tetragonal crystal system, tetragonal crystal structure, and massicot having an orthorhombic crystal system, orthorhombic crystal structure. Modern applications for PbO are mostly in lead-based industrial lead glass, glass and industrial ceramics, including computer components. It is an amphoterism, amphoteric oxide. Types Lead oxide exists in two types: * Red tetragonal (α-PbO), obtained at lower temperatures than the β-PbO * Yellow orthorhombic (β-PbO), which is obtained temperatures higher than Synthesis PbO may be prepared by heating lead metal in air at approximately . At this temperature it is also the end product of decomposition of other lead oxide (other), oxides of lead in air: :PbO2->[] Pb12O19 ->[] Pb12O17 ->[] Pb3O4 ->[] PbO Thermal decomposition of lead(II) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coal Gas
Coal gas is a flammable gaseous fuel made from coal and supplied to the user via a piped distribution system. It is produced when coal is heated strongly in the absence of air. Town gas is a more general term referring to manufactured gaseous fuels produced for sale to consumers and municipalities. The original coal gas was produced by the coal gasification reaction, and thus the burnable component consisted of a roughly equal molecular mixture of carbon monoxide and hydrogen. Thus, coal gas was highly toxic. Other compositions contain additional calorific gases such as methane, produced by the Fischer-Tropsch process, and volatile hydrocarbons together with small quantities of non-calorific gases such as carbon dioxide and nitrogen. Prior to the development of natural gas supply and transmission—during the 1940s and 1950s in the United States and during the late 1960s and 1970s in the United Kingdom and Australia—almost all gas for fuel and lighting was manufactured fr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Flow Process
The region of space enclosed by open system boundaries is usually called a control volume. It may or may not correspond to physical walls. It is convenient to define the shape of the control volume so that all flow of matter, in or out, occurs perpendicular to its surface. One may consider a process in which the matter flowing into and out of the system is chemically homogeneous.Shavit, A., Gutfinger, C. (1995). ''Thermodynamics. From Concepts to Applications'', Prentice Hall, London, , Chapter 6. Then the inflowing matter performs work as if it were driving a piston of fluid into the system. Also, the system performs work as if it were driving out a piston of fluid. Through the system walls that do not pass matter, heat () and work () transfers may be defined, including shaft work. Classical thermodynamics considers processes for a system that is initially and finally in its own internal state of thermodynamic equilibrium, with no flow. This is feasible also under some restric ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lead Chamber Process
The lead chamber process was an industrial method used to produce sulfuric acid in large quantities. It has been largely supplanted by the contact process. In 1746 in Birmingham, England, John Roebuck began producing sulfuric acid in lead-lined chambers, which were stronger and less expensive and could be made much larger than the glass containers that had been used previously. This allowed the effective industrialization of sulfuric acid production, and with several refinements, this process remained the standard method of production for almost two centuries. The process was so robust that as late as 1946, the chamber process still accounted for 25% of sulfuric acid manufactured. History Sulfur dioxide is introduced with steam and nitrogen dioxide into large chambers lined with sheet lead where the gases are sprayed down with water and chamber acid (62–70% sulfuric acid). The sulfur dioxide and nitrogen dioxide dissolve, and over a period of approximately 30 minutes the s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Malleability
Ductility is a mechanical property commonly described as a material's amenability to drawing (e.g. into wire). In materials science, ductility is defined by the degree to which a material can sustain plastic deformation under tensile stress before failure. Ductility is an important consideration in engineering and manufacturing. It defines a material's suitability for certain manufacturing operations (such as cold working) and its capacity to absorb mechanical overload.. Some metals that are generally described as ductile include gold and copper. However, not all metals experience ductile failure as some can be characterized with brittle failure like cast iron. Polymers generally can be viewed as ductile materials as they typically allow for plastic deformation. Malleability, a similar mechanical property, is characterized by a material's ability to deform plastically without failure under compressive stress. Historically, materials were considered malleable if they were am ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Oxidising Flame
In pyrology, flames are affected by the fuel introduced and the oxygen available. A flame with a good oxygen-fuel ratio is called a neutral flame. The color of the flame is semi-transparent purple or blue. This flame is optimal for all intentions, because it does not oxidize or get soot onto surfaces. Oxidizing flame If the flame has too much oxygen, an oxidizing flame is produced. When the amount of oxygen increases, the flame shortens due to quicker combustion, its color becomes a more transparent blue, and it hisses/roars."The Anatomy of a Flame"
in: "Jewelry concepts and technology", by Oppi Untracht, 1983,
With some exceptions (e.g., platinum

picture info

Hydrogen
Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, and highly combustible. Hydrogen is the most abundant chemical substance in the universe, constituting roughly 75% of all normal matter.However, most of the universe's mass is not in the form of baryons or chemical elements. See dark matter and dark energy. Stars such as the Sun are mainly composed of hydrogen in the plasma state. Most of the hydrogen on Earth exists in molecular forms such as water and organic compounds. For the most common isotope of hydrogen (symbol 1H) each atom has one proton, one electron, and no neutrons. In the early universe, the formation of protons, the nuclei of hydrogen, occurred during the first second after the Big Bang. The emergence of neutral hydrogen atoms throughout the universe occurre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natural Gas
Natural gas (also called fossil gas or simply gas) is a naturally occurring mixture of gaseous hydrocarbons consisting primarily of methane in addition to various smaller amounts of other higher alkanes. Low levels of trace gases like carbon dioxide, nitrogen, hydrogen sulfide, and helium are also usually present. Natural gas is colorless and odorless, so odorizers such as mercaptan (which smells like sulfur or rotten eggs) are commonly added to natural gas supplies for safety so that leaks can be readily detected. Natural gas is a fossil fuel and non-renewable resource that is formed when layers of organic matter (primarily marine microorganisms) decompose under anaerobic conditions and are subjected to intense heat and pressure underground over millions of years. The energy that the decayed organisms originally obtained from the sun via photosynthesis is stored as chemical energy within the molecules of methane and other hydrocarbons. Natural gas can be burned for he ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]