HOME





Lattice Theorem
In group theory, the correspondence theorem (also the lattice theorem,W.R. Scott: ''Group Theory'', Prentice Hall, 1964, p. 27. and variously and ambiguously the third and fourth isomorphism theorem ) states that if N is a normal subgroup of a group G, then there exists a bijection from the set of all subgroups A of G containing N, onto the set of all subgroups of the quotient group G/N. Loosely speaking, the structure of the subgroups of G/N is exactly the same as the structure of the subgroups of G containing N, with N collapsed to the identity element. Specifically, if : G is a group, : N \triangleleft G, a normal subgroup of G, : \mathcal = \, the set of all subgroups A of G that contain N, and : \mathcal = \, the set of all subgroups of G/N, then there is a bijective map \phi: \mathcal \to \mathcal such that : \phi(A) = A/N for all A \in \mathcal. One further has that if A and B are in \mathcal then * A \subseteq B if and only if A/N \subseteq B/N; * if A \subsete ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field (mathematics), fields, and vector spaces, can all be seen as groups endowed with additional operation (mathematics), operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right. Various physical systems, such as crystals and the hydrogen atom, and Standard Model, three of the four known fundamental forces in the universe, may be modelled by symmetry groups. Thus group theory and the closely related representation theory have many important applications in physics, chemistry, and materials science. Group theory is also cen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lattice Of Subgroups
In mathematics, the lattice of subgroups of a group G is the lattice whose elements are the subgroups of G, with the partial ordering being set inclusion. In this lattice, the join of two subgroups is the subgroup generated by their union, and the meet of two subgroups is their intersection. Example The dihedral group Dih4 has ten subgroups, counting itself and the trivial subgroup. Five of the eight group elements generate subgroups of order two, and the other two non- identity elements both generate the same cyclic subgroup of order four. In addition, there are two subgroups of the form Z2 × Z2, generated by pairs of elements. The lattice formed by these ten subgroups is shown in the illustration. This example also shows that the lattice of all subgroups of a group is not a modular lattice in general. Indeed, this particular lattice contains the forbidden "pentagon" N5 as a sublattice. Properties For any ''A'', ''B'', and ''C'' subgroups of a group with '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Structure
In mathematics, an algebraic structure or algebraic system consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplication), and a finite set of identities (known as ''axioms'') that these operations must satisfy. An algebraic structure may be based on other algebraic structures with operations and axioms involving several structures. For instance, a vector space involves a second structure called a field, and an operation called ''scalar multiplication'' between elements of the field (called '' scalars''), and elements of the vector space (called '' vectors''). Abstract algebra is the name that is commonly given to the study of algebraic structures. The general theory of algebraic structures has been formalized in universal algebra. Category theory is another formalization that includes also other mathematical structures and functions between structu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Congruence Relation
In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group (mathematics), group, ring (mathematics), ring, or vector space) that is compatible with the structure in the sense that algebraic operations done with equivalent elements will yield equivalent elements. Every congruence relation has a corresponding Equivalence class, quotient structure, whose elements are the equivalence classes (or congruence classes) for the relation. Definition The definition of a congruence depends on the type of algebraic structure under consideration. Particular definitions of congruence can be made for group (mathematics), groups, ring (mathematics), rings, vector spaces, module (mathematics), modules, semigroups, lattice (order), lattices, and so forth. The common theme is that a congruence is an equivalence relation on an algebraic object that is compatible with the algebraic structure, in the sense that the operat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Isomorphism Theorems
In mathematics, specifically abstract algebra, the isomorphism theorems (also known as Noether's isomorphism theorems) are theorems that describe the relationship among quotients, homomorphisms, and subobjects. Versions of the theorems exist for groups, rings, vector spaces, modules, Lie algebras, and other algebraic structures. In universal algebra, the isomorphism theorems can be generalized to the context of algebras and congruences. History The isomorphism theorems were formulated in some generality for homomorphisms of modules by Emmy Noether in her paper ''Abstrakter Aufbau der Idealtheorie in algebraischen Zahl- und Funktionenkörpern'', which was published in 1927 in Mathematische Annalen. Less general versions of these theorems can be found in work of Richard Dedekind and previous papers by Noether. Three years later, B.L. van der Waerden published his influential '' Moderne Algebra'', the first abstract algebra textbook that took the groups- rings- fie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Algebra Over A Field
In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear map, bilinear product (mathematics), product. Thus, an algebra is an algebraic structure consisting of a set (mathematics), set together with operations of multiplication and addition and scalar multiplication by elements of a field (mathematics), field and satisfying the axioms implied by "vector space" and "bilinear". The multiplication operation in an algebra may or may not be associative, leading to the notions of associative algebras where associativity of multiplication is assumed, and non-associative algebras, where associativity is not assumed (but not excluded, either). Given an integer ''n'', the ring (mathematics), ring of real matrix, real square matrix, square matrices of order ''n'' is an example of an associative algebra over the field of real numbers under matrix addition and matrix multiplication since matrix multiplication is associative. Three-dime ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vector Space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called scalar (mathematics), ''scalars''. The operations of vector addition and scalar multiplication must satisfy certain requirements, called ''vector axioms''. Real vector spaces and complex vector spaces are kinds of vector spaces based on different kinds of scalars: real numbers and complex numbers. Scalars can also be, more generally, elements of any field (mathematics), field. Vector spaces generalize Euclidean vectors, which allow modeling of Physical quantity, physical quantities (such as forces and velocity) that have not only a Magnitude (mathematics), magnitude, but also a Orientation (geometry), direction. The concept of vector spaces is fundamental for linear algebra, together with the concept of matrix (mathematics), matrices, which ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Module (mathematics)
In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a (not necessarily commutative) ring. The concept of a ''module'' also generalizes the notion of an abelian group, since the abelian groups are exactly the modules over the ring of integers. Like a vector space, a module is an additive abelian group, and scalar multiplication is distributive over the operations of addition between elements of the ring or module and is compatible with the ring multiplication. Modules are very closely related to the representation theory of groups. They are also one of the central notions of commutative algebra and homological algebra, and are used widely in algebraic geometry and algebraic topology. Introduction and definition Motivation In a vector space, the set of scalars is a field and acts on the vectors by scalar multiplication, subject to certain axioms such as the distributive law. In a module, the scal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ring (mathematics)
In mathematics, a ring is an algebraic structure consisting of a set with two binary operations called ''addition'' and ''multiplication'', which obey the same basic laws as addition and multiplication of integers, except that multiplication in a ring does not need to be commutative. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series. A ''ring'' may be defined as a set that is endowed with two binary operations called ''addition'' and ''multiplication'' such that the ring is an abelian group with respect to the addition operator, and the multiplication operator is associative, is distributive over the addition operation, and has a multiplicative identity element. (Some authors apply the term ''ring'' to a further generalization, often called a '' rng'', that omits the requirement for a multiplicative identity, and instead call the structure defi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kernel Operator
In mathematics, a closure operator on a set ''S'' is a function \operatorname: \mathcal(S)\rightarrow \mathcal(S) from the power set of ''S'' to itself that satisfies the following conditions for all sets X,Y\subseteq S : Closure operators are determined by their closed sets, i.e., by the sets of the form cl(''X''), since the closure cl(''X'') of a set ''X'' is the smallest closed set containing ''X''. Such families of "closed sets" are sometimes called closure systems or "Moore families". A set together with a closure operator on it is sometimes called a closure space. Closure operators are also called "hull operators", which prevents confusion with the "closure operators" studied in topology. History E. H. Moore studied closure operators in his 1910 ''Introduction to a form of general analysis'', whereas the concept of the closure of a subset originated in the work of Frigyes Riesz in connection with topological spaces. Though not formalized at the time, the idea of closure ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Closure Operator
In mathematics, a closure operator on a Set (mathematics), set ''S'' is a Function (mathematics), function \operatorname: \mathcal(S)\rightarrow \mathcal(S) from the power set of ''S'' to itself that satisfies the following conditions for all sets X,Y\subseteq S : Closure operators are determined by their closed sets, i.e., by the sets of the form cl(''X''), since the closure cl(''X'') of a set ''X'' is the smallest closed set containing ''X''. Such families of "closed sets" are sometimes called closure systems or "Moore families". A set together with a closure operator on it is sometimes called a closure space. Closure operators are also called "hull operators", which prevents confusion with the "closure operators" studied in point-set topology, topology. History E. H. Moore studied closure operators in his 1910 ''Introduction to a form of general analysis'', whereas the concept of the closure of a subset originated in the work of Frigyes Riesz in connection with topological sp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Galois Connection
In mathematics, especially in order theory, a Galois connection is a particular correspondence (typically) between two partially ordered sets (posets). Galois connections find applications in various mathematical theories. They generalize the fundamental theorem of Galois theory about the correspondence between subgroups and subfields, discovered by the French mathematician Évariste Galois. A Galois connection can also be defined on preordered sets or classes; this article presents the common case of posets. The literature contains two closely related notions of "Galois connection". In this article, we will refer to them as (monotone) Galois connections and antitone Galois connections. A Galois connection is rather weak compared to an order isomorphism between the involved posets, but every Galois connection gives rise to an isomorphism of certain sub-posets, as will be explained below. The term Galois correspondence is sometimes used to mean a bijective ''Galois connection'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]