HOME





Latent Semantic Indexing
Latent semantic analysis (LSA) is a technique in natural language processing, in particular distributional semantics, of analyzing relationships between a set of documents and the terms they contain by producing a set of concepts related to the documents and terms. LSA assumes that words that are close in meaning will occur in similar pieces of text (the distributional hypothesis). A matrix containing word counts per document (rows represent unique words and columns represent each document) is constructed from a large piece of text and a mathematical technique called singular value decomposition (SVD) is used to reduce the number of rows while preserving the similarity structure among columns. Documents are then compared by cosine similarity between any two columns. Values close to 1 represent very similar documents while values close to 0 represent very dissimilar documents. An information retrieval technique using latent semantic structure was patented in 1988 by Scott De ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Natural Language Processing
Natural language processing (NLP) is a subfield of computer science and especially artificial intelligence. It is primarily concerned with providing computers with the ability to process data encoded in natural language and is thus closely related to information retrieval, knowledge representation and computational linguistics, a subfield of linguistics. Major tasks in natural language processing are speech recognition, text classification, natural-language understanding, natural language understanding, and natural language generation. History Natural language processing has its roots in the 1950s. Already in 1950, Alan Turing published an article titled "Computing Machinery and Intelligence" which proposed what is now called the Turing test as a criterion of intelligence, though at the time that was not articulated as a problem separate from artificial intelligence. The proposed test includes a task that involves the automated interpretation and generation of natural language ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vector Space Model
Vector space model or term vector model is an algebraic model for representing text documents (or more generally, items) as vector space, vectors such that the distance between vectors represents the relevance between the documents. It is used in information filtering, information retrieval, index (search engine), indexing and relevancy rankings. Its first use was in the SMART Information Retrieval System. Definitions In this section we consider a particular vector space model based on the Bag-of-words model, bag-of-words representation. Documents and queries are represented as vectors. :d_j = ( w_ ,w_ , \dotsc ,w_ ) :q = ( w_ ,w_ , \dotsc ,w_ ) Each Dimension (vector space), dimension corresponds to a separate term. If a term occurs in the document, its value in the vector is non-zero. Several different ways of computing these values, also known as (term) weights, have been developed. One of the best known schemes is tf-idf weighting (see the example below). The definition of ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Frobenius Norm
In the field of mathematics, norms are defined for elements within a vector space. Specifically, when the vector space comprises matrices, such norms are referred to as matrix norms. Matrix norms differ from vector norms in that they must also interact with matrix multiplication. Preliminaries Given a field \ K\ of either real or complex numbers (or any complete subset thereof), let \ K^\ be the -vector space of matrices with m rows and n columns and entries in the field \ K ~. A matrix norm is a norm on \ K^~. Norms are often expressed with double vertical bars (like so: \ \, A\, \ ). Thus, the matrix norm is a function \ \, \cdot\, : K^ \to \R^\ that must satisfy the following properties: For all scalars \ \alpha \in K\ and matrices \ A, B \in K^\ , * \, A\, \ge 0\ (''positive-valued'') * \, A\, = 0 \iff A=0_ (''definite'') * \left\, \alpha\ A \right\, = \left, \alpha \\ \left\, A\right\, \ (''absolutely homogeneous'') * \, A + B \, \le \, A \, + \, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eigenvector
In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by a constant factor \lambda when the linear transformation is applied to it: T\mathbf v=\lambda \mathbf v. The corresponding eigenvalue, characteristic value, or characteristic root is the multiplying factor \lambda (possibly a negative or complex number). Geometrically, vectors are multi- dimensional quantities with magnitude and direction, often pictured as arrows. A linear transformation rotates, stretches, or shears the vectors upon which it acts. A linear transformation's eigenvectors are those vectors that are only stretched or shrunk, with neither rotation nor shear. The corresponding eigenvalue is the factor by which an eigenvector is stretched or shrunk. If the eigenvalue is negative, the eigenvector's direction is reversed. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Diagonal Matrix
In linear algebra, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero; the term usually refers to square matrices. Elements of the main diagonal can either be zero or nonzero. An example of a 2×2 diagonal matrix is \left begin 3 & 0 \\ 0 & 2 \end\right/math>, while an example of a 3×3 diagonal matrix is \left begin 6 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 4 \end\right/math>. An identity matrix of any size, or any multiple of it is a diagonal matrix called a ''scalar matrix'', for example, \left begin 0.5 & 0 \\ 0 & 0.5 \end\right/math>. In geometry, a diagonal matrix may be used as a '' scaling matrix'', since matrix multiplication with it results in changing scale (size) and possibly also shape; only a scalar matrix results in uniform change in scale. Definition As stated above, a diagonal matrix is a matrix in which all off-diagonal entries are zero. That is, the matrix with columns and rows is diagonal if \forall i,j \in \, i \ne j \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Orthogonal Matrix
In linear algebra, an orthogonal matrix, or orthonormal matrix, is a real square matrix whose columns and rows are orthonormal vectors. One way to express this is Q^\mathrm Q = Q Q^\mathrm = I, where is the transpose of and is the identity matrix. This leads to the equivalent characterization: a matrix is orthogonal if its transpose is equal to its inverse: Q^\mathrm=Q^, where is the inverse of . An orthogonal matrix is necessarily invertible (with inverse ), unitary (), where is the Hermitian adjoint ( conjugate transpose) of , and therefore normal () over the real numbers. The determinant of any orthogonal matrix is either +1 or −1. As a linear transformation, an orthogonal matrix preserves the inner product of vectors, and therefore acts as an isometry of Euclidean space, such as a rotation, reflection or rotoreflection. In other words, it is a unitary transformation. The set of orthogonal matrices, under multiplication, forms the group , known as th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matrix Product
In mathematics, specifically in linear algebra, matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix. The resulting matrix, known as the matrix product, has the number of rows of the first and the number of columns of the second matrix. The product of matrices and is denoted as . Matrix multiplication was first described by the French mathematician Jacques Philippe Marie Binet in 1812, to represent the composition of linear maps that are represented by matrices. Matrix multiplication is thus a basic tool of linear algebra, and as such has numerous applications in many areas of mathematics, as well as in applied mathematics, statistics, physics, economics, and engineering. Computing matrix products is a central operation in all computational applications of linear algebra. Notation This article will use the following notat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Correlation
In statistics, correlation or dependence is any statistical relationship, whether causal or not, between two random variables or bivariate data. Although in the broadest sense, "correlation" may indicate any type of association, in statistics it usually refers to the degree to which a pair of variables are '' linearly'' related. Familiar examples of dependent phenomena include the correlation between the height of parents and their offspring, and the correlation between the price of a good and the quantity the consumers are willing to purchase, as it is depicted in the demand curve. Correlations are useful because they can indicate a predictive relationship that can be exploited in practice. For example, an electrical utility may produce less power on a mild day based on the correlation between electricity demand and weather. In this example, there is a causal relationship, because extreme weather causes people to use more electricity for heating or cooling. However, in g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dot Product
In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a Scalar (mathematics), scalar as a result". It is also used for other symmetric bilinear forms, for example in a pseudo-Euclidean space. Not to be confused with scalar multiplication. is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean geometry, the dot product of the Cartesian coordinates of two Euclidean vector, vectors is widely used. It is often called the inner product (or rarely the projection product) of Euclidean space, even though it is not the only inner product that can be defined on Euclidean space (see ''Inner product space'' for more). It should not be confused with the cross product. Algebraically, the dot product is the sum of the Product (mathematics), products of the corresponding entries of the two sequences of numbers. Geometrically, it is the product of the Euc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polysemy
Polysemy ( or ; ) is the capacity for a Sign (semiotics), sign (e.g. a symbol, morpheme, word, or phrase) to have multiple related meanings. For example, a word can have several word senses. Polysemy is distinct from ''monosemy'', where a word has a single meaning. Polysemy is distinct from homonymy—or homophone, homophony—which is an Accident (philosophy), accidental similarity between two or more words (such as ''bear'' the animal, and the verb wikt:bear#Etymology 2, ''bear''); whereas homonymy is a mere linguistic coincidence, polysemy is not. In discerning whether a given set of meanings represent polysemy or homonymy, it is often necessary to look at the history of the word to see whether the two meanings are historically related. Lexicography, Dictionary writers often list polysemes (words or phrases with different, but related, senses) in the same entry (that is, under the same headword) and enter homonyms as separate headwords (usually with a numbering convention such ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Synonymy
A synonym is a word, morpheme, or phrase that means precisely or nearly the same as another word, morpheme, or phrase in a given language. For example, in the English language, the words ''begin'', ''start'', ''commence'', and ''initiate'' are all synonyms of one another: they are ''synonymous''. The standard test for synonymy is substitution: one form can be replaced by another in a sentence without changing its meaning. Words may often be synonymous in only one particular sense: for example, ''long'' and ''extended'' in the context ''long time'' or ''extended time'' are synonymous, but ''long'' cannot be used in the phrase ''extended family''. Synonyms with exactly the same meaning share a seme or denotational sememe, whereas those with inexactly similar meanings share a broader denotational or connotational sememe and thus overlap within a semantic field. The former are sometimes called cognitive synonyms and the latter, near-synonyms, plesionyms or poecilonyms. Lexicogr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]