HOME



picture info

Laplace–Runge–Lenz Vector
In classical mechanics, the Laplace–Runge–Lenz vector (LRL vector) is a vector (geometric), vector used chiefly to describe the shape and orientation of the orbit (celestial mechanics), orbit of one astronomical body around another, such as a binary star or a planet revolving around a star. For Two-body problem, two bodies interacting by Newton's law of universal gravitation, Newtonian gravity, the LRL vector is a constant of motion, meaning that it is the same no matter where it is calculated on the orbit; equivalently, the LRL vector is said to be ''Conservation law, conserved''. More generally, the LRL vector is conserved in all problems in which two bodies interact by a central force that varies as the inverse square law, inverse square of the distance between them; such problems are called Kepler problems. Thus the hydrogen atom is a Kepler problem, since it comprises two charged particles interacting by Coulomb's law of electrostatics, another inverse-square central force ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Classical Mechanics
Classical mechanics is a Theoretical physics, physical theory describing the motion of objects such as projectiles, parts of Machine (mechanical), machinery, spacecraft, planets, stars, and galaxies. The development of classical mechanics involved Scientific Revolution, substantial change in the methods and philosophy of physics. The qualifier ''classical'' distinguishes this type of mechanics from physics developed after the History of physics#20th century: birth of modern physics, revolutions in physics of the early 20th century, all of which revealed limitations in classical mechanics. The earliest formulation of classical mechanics is often referred to as Newtonian mechanics. It consists of the physical concepts based on the 17th century foundational works of Sir Isaac Newton, and the mathematical methods invented by Newton, Gottfried Wilhelm Leibniz, Leonhard Euler and others to describe the motion of Physical body, bodies under the influence of forces. Later, methods bas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Schrödinger Equation
The Schrödinger equation is a partial differential equation that governs the wave function of a non-relativistic quantum-mechanical system. Its discovery was a significant landmark in the development of quantum mechanics. It is named after Erwin Schrödinger, an Austrian physicist, who postulated the equation in 1925 and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933. Conceptually, the Schrödinger equation is the quantum counterpart of Newton's second law in classical mechanics. Given a set of known initial conditions, Newton's second law makes a mathematical prediction as to what path a given physical system will take over time. The Schrödinger equation gives the evolution over time of the wave function, the quantum-mechanical characterization of an isolated physical system. The equation was postulated by Schrödinger based on a postulate of Louis de Broglie that all matter has an associated matter wave. The equati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electromagnetic Field
An electromagnetic field (also EM field) is a physical field, varying in space and time, that represents the electric and magnetic influences generated by and acting upon electric charges. The field at any point in space and time can be regarded as a combination of an electric field and a magnetic field. Because of the interrelationship between the fields, a disturbance in the electric field can create a disturbance in the magnetic field which in turn affects the electric field, leading to an oscillation that propagates through space, known as an ''electromagnetic wave''. The way in which charges and currents (i.e. streams of charges) interact with the electromagnetic field is described by Maxwell's equations and the Lorentz force law. Maxwell's equations detail how the electric field converges towards or diverges away from electric charges, how the magnetic field curls around electrical currents, and how changes in the electric and magnetic fields influence each other. The Lor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Special Relativity
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between Spacetime, space and time. In Albert Einstein's 1905 paper, Annus Mirabilis papers#Special relativity, "On the Electrodynamics of Moving Bodies", the theory is presented as being based on just Postulates of special relativity, two postulates: # The laws of physics are Invariant (physics), invariant (identical) in all Inertial frame of reference, inertial frames of reference (that is, Frame of reference, frames of reference with no acceleration). This is known as the principle of relativity. # The speed of light in vacuum is the same for all observers, regardless of the motion of light source or observer. This is known as the principle of light constancy, or the principle of light speed invariance. The first postulate was first formulated by Galileo Galilei (see ''Galilean invariance''). Background Special relativity builds upon important physics ide ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Celestial Mechanics
Celestial mechanics is the branch of astronomy that deals with the motions of objects in outer space. Historically, celestial mechanics applies principles of physics (classical mechanics) to astronomical objects, such as stars and planets, to produce ephemeris data. History Modern analytic celestial mechanics started with Isaac Newton's ''Principia'' (1687). The name celestial mechanics is more recent than that. Newton wrote that the field should be called "rational mechanics". The term "dynamics" came in a little later with Gottfried Leibniz, and over a century after Newton, Pierre-Simon Laplace introduced the term ''celestial mechanics''. Prior to Kepler, there was little connection between exact, quantitative prediction of planetary positions, using geometrical or numerical techniques, and contemporary discussions of the physical causes of the planets' motion. Laws of planetary motion Johannes Kepler was the first to closely integrate the predictive geometrical a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Eccentricity Vector
In celestial mechanics, the eccentricity vector of a Kepler orbit is the dimensionless vector with direction pointing from apoapsis to periapsis and with magnitude equal to the orbit's scalar eccentricity. For Kepler orbits the eccentricity vector is a constant of motion. Its main use is in the analysis of almost circular orbits, as perturbing (non-Keplerian) forces on an actual orbit will cause the osculating eccentricity vector to change continuously as opposed to the eccentricity and argument of periapsis parameters for which eccentricity zero (circular orbit) corresponds to a singularity. Calculation The eccentricity vector \mathbf \, is: : \mathbf = - = \left ( - \right ) \mathbf - \mathbf which follows immediately from the vector identity: : \mathbf\times \left ( \mathbf\times \mathbf \right ) = \left ( \mathbf \cdot \mathbf \right ) \mathbf - \left ( \mathbf \cdot \mathbf \right ) \mathbf where: *\mathbf\,\! is position vector *\mathbf\,\! is velocity vector *\ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stigler's Law Of Eponymy
Stigler's law of eponymy, proposed by University of Chicago statistics professor Stephen Stigler in his 1980 publication "Stigler's law of eponymy", states that "no scientific discovery is named after its original discoverer." Examples include Hubble's law, which was derived by Georges Lemaître two years before Edwin Hubble; the Pythagorean theorem, which was known to Babylonian mathematicians before Pythagoras; and Halley's Comet, which was observed by astronomers since at least 240 BC (although its official designation is due to the first ever mathematical prediction of such astronomical phenomenon in the sky, not to its discovery). Stigler attributed the discovery of Stigler's law to sociologist Robert K. Merton, from whom Stigler stole credit so that it would be an example of the law. The same observation had previously also been made by many others. Derivation Historical acclaim for discoveries is often assigned to persons of note who bring attention to an idea that i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


American Journal Of Physics
The ''American Journal of Physics'' is a monthly, peer-reviewed scientific journal published by the American Association of Physics Teachers and the American Institute of Physics. The editor-in-chief is Beth Parks of Colgate University."Current Frequency: Monthly, 2002; and Former Frequency varies, 1940-2001" Confirmation of Editor, ISSN, CODEN, and other relevant information. Aims and scope The focus of this journal is undergraduate and graduate level physics. The intended audience is college and university physics teachers and students. Coverage includes current research in physics, instructional laboratory equipment, laboratory demonstrations, teaching methodologies, lists of resources, and book reviews. In addition, historical, philosophical and cultural aspects of physics are also covered. According to the 2021 Journal Citation Reports from Clarivate, this journal has a 2020 impact factor of 1.022. History The former title of this journal was ''American Physics Teach ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Wilhelm Lenz
Wilhelm Lenz (February 8, 1888 in Frankfurt am Main – April 30, 1957 in Hamburg) was a German physicist, most notable for his invention of the Ising model (named after his student, Ernst Ising), and for his application of the Laplace–Runge–Lenz vector to the old quantum mechanical treatment of hydrogen-like atoms. Biography In 1906, Lenz graduated from the Klinger-Oberralschule, a non-classical secondary school in Frankfurt, and went to study mathematics and physics at the University of Göttingen. From 1908 to 1911, Lenz studied under Arnold Sommerfeld, at the University of Munich, and he was granted his doctorate on March 2, 1911. Upon graduation, he stayed on at the University, became Sommerfeld’s assistant on April 1, 1911, and he completed his Habilitation on February 20, 1914, becoming a Privatdozent on April 4, 1914. During World War I, he served as a radio operator in France and was awarded the Iron Cross Second Class in 1916. From September 30, 1920, he was ag ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Carl David Tolmé Runge
Carl David Tolmé Runge (; 30 August 1856 – 3 January 1927) was a German mathematician, physicist, and spectroscopist. He was co-developer and co-eponym of the Runge–Kutta method (), in the field of what is today known as numerical analysis. Life and work Runge spent the first few years of his life in Havana, where his father Julius Runge was the Danish consul. His mother was Fanny Schwartz Tolmé. The family later moved to Bremen, where his father died early (in 1864). In 1880, he received his Ph.D. in mathematics at Berlin, where he studied under Karl Weierstrass. In 1886, he became a professor at the Technische Hochschule Hannover in Hanover, Germany. His interests included mathematics, spectroscopy, geodesy, and astrophysics. In addition to pure mathematics, he did experimental work studying spectral lines of various elements (together with Heinrich Kayser), and was very interested in the application of this work to astronomical spectroscopy. In 1904, on the initi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pierre-Simon Laplace
Pierre-Simon, Marquis de Laplace (; ; 23 March 1749 – 5 March 1827) was a French polymath, a scholar whose work has been instrumental in the fields of physics, astronomy, mathematics, engineering, statistics, and philosophy. He summarized and extended the work of his predecessors in his five-volume Traité de mécanique céleste, ''Mécanique céleste'' (''Celestial Mechanics'') (1799–1825). This work translated the geometric study of classical mechanics to one based on calculus, opening up a broader range of problems. Laplace also popularized and further confirmed Isaac Newton, Sir Isaac Newton's work. In statistics, the Bayesian probability, Bayesian interpretation of probability was developed mainly by Laplace. Laplace formulated Laplace's equation, and pioneered the Laplace transform which appears in many branches of mathematical physics, a field that he took a leading role in forming. The Laplace operator, Laplacian differential operator, widely used in mathematic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Energy
Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and light. Energy is a Conservation law, conserved quantity—the law of conservation of energy states that energy can be Energy transformation, converted in form, but not created or destroyed. The unit of measurement for energy in the International System of Units (SI) is the joule (J). Forms of energy include the kinetic energy of a moving object, the potential energy stored by an object (for instance due to its position in a Classical field theory, field), the elastic energy stored in a solid object, chemical energy associated with chemical reactions, the radiant energy carried by electromagnetic radiation, the internal energy contained within a thermodynamic system, and rest energy associated with an object's rest mass. These are not mutual ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]