Lambda Lifting
Lambda lifting is a meta-process that restructures a computer program so that functions are defined independently of each other in a global scope. An individual ''lift'' transforms a local function (subroutine) into a global function. It is a two step process, consisting of: * Eliminating free variables in the function by adding parameters. * Moving functions from a restricted scope to broader or global scope. The term "lambda lifting" was first introduced by Thomas Johnsson around 1982 and was historically considered as a mechanism for implementing programming languages based on functional programming. It is used in conjunction with other techniques in some modern compilers. Lambda lifting is not the same as closure conversion. It requires all call sites to be adjusted (adding extra arguments (parameters) to calls) and does not introduce a closure for the lifted lambda expression. In contrast, closure conversion does not require call sites to be adjusted but does introduce ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Metaprogramming
Metaprogramming is a computer programming technique in which computer programs have the ability to treat other programs as their data. It means that a program can be designed to read, generate, analyse, or transform other programs, and even modify itself, while running. In some cases, this allows programmers to minimize the number of lines of code to express a solution, in turn reducing development time. It also allows programs more flexibility to efficiently handle new situations with no recompiling. Metaprogramming can be used to move computations from runtime to compile time, to generate code using compile time computations, and to enable self-modifying code. The ability of a programming language to be its own metalanguage allows reflective programming, and is termed ''reflection''. Reflection is a valuable language feature to facilitate metaprogramming. Metaprogramming was popular in the 1970s and 1980s using list processing languages such as Lisp. Lisp machine hardware ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Beta Reduction
In mathematical logic, the lambda calculus (also written as ''λ''-calculus) is a formal system for expressing computation based on function abstraction and application using variable Name binding, binding and Substitution (algebra), substitution. Untyped lambda calculus, the topic of this article, is a universal machine, a model of computation that can be used to simulate any Turing machine (and vice versa). It was introduced by the mathematician Alonzo Church in the 1930s as part of his research into the foundations of mathematics. In 1936, Church found a formulation which was #History, logically consistent, and documented it in 1940. Lambda calculus consists of constructing #Lambda terms, lambda terms and performing #Reduction, reduction operations on them. A term is defined as any valid lambda calculus expression. In the simplest form of lambda calculus, terms are built using only the following rules: # x: A #validLambdaVar, variable is a character or string representing a pa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Garbage Collection (computer Science)
In computer science, garbage collection (GC) is a form of automatic memory management. The ''garbage collector'' attempts to reclaim memory that was allocated by the program, but is no longer referenced; such memory is called ''garbage (computer science), garbage''. Garbage collection was invented by American computer scientist John McCarthy (computer scientist), John McCarthy around 1959 to simplify manual memory management in Lisp (programming language), Lisp. Garbage collection relieves the programmer from doing manual memory management, where the programmer specifies what objects to de-allocate and return to the memory system and when to do so. Other, similar techniques include stack-based memory allocation, stack allocation, region inference, and memory ownership, and combinations thereof. Garbage collection may take a significant proportion of a program's total processing time, and affect computer performance, performance as a result. Resources other than memory, such a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Function Pointer
A function pointer, also called a subroutine pointer or procedure pointer, is a pointer referencing executable code, rather than data. Dereferencing the function pointer yields the referenced function, which can be invoked and passed arguments just as in a normal function call. Such an invocation is also known as an "indirect" call, because the function is being invoked ''indirectly'' through a variable instead of ''directly'' through a fixed identifier or address. Function pointers allow different code to be executed at runtime. They can also be passed to a function to enable callbacks. Function pointers are supported by third-generation programming languages (such as PL/I, COBOL, Fortran, dBASE dBL, and C) and object-oriented programming languages (such as C++, C#, and D). Simple function pointers The simplest implementation of a function (or subroutine) pointer is as a variable containing the address of the function within executable memory. Older third-generati ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stack Frame
In computer science, a call stack is a stack data structure that stores information about the active subroutines and inline blocks of a computer program. This type of stack is also known as an execution stack, program stack, control stack, run-time stack, or machine stack, and is often shortened to simply the "stack". Although maintenance of the call stack is important for the proper functioning of most software, the details are normally hidden and automatic in high-level programming languages. Many computer instruction sets provide special instructions for manipulating stacks. A call stack is used for several related purposes, but the main reason for having one is to keep track of the point to which each active subroutine should return control when it finishes executing. An active subroutine is one that has been called, but is yet to complete execution, after which control should be handed back to the point of call. Such activations of subroutines may be nested to any level (re ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lazy Evaluation
In programming language theory, lazy evaluation, or call-by-need, is an evaluation strategy which delays the evaluation of an Expression (computer science), expression until its value is needed (non-strict evaluation) and which avoids repeated evaluations (by the use of Sharing (computer science), sharing). The benefits of lazy evaluation include: * The ability to define control flow (structures) as abstractions instead of Language primitive, primitives. * The ability to define actual infinity, potentially infinite data structures. This allows for more straightforward implementation of some algorithms. * The ability to define partly-defined data structures where some elements are errors. This allows for rapid prototyping. Lazy evaluation is often combined with memoization, as described in Jon Bentley (computer scientist), Jon Bentley's ''Writing Efficient Programs''. After a function's value is computed for that Parameter (computer programming), parameter or set of parameters, th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Haskell
Haskell () is a general-purpose, statically typed, purely functional programming language with type inference and lazy evaluation. Designed for teaching, research, and industrial applications, Haskell pioneered several programming language features such as type classes, which enable type-safe operator overloading, and monadic input/output (IO). It is named after logician Haskell Curry. Haskell's main implementation is the Glasgow Haskell Compiler (GHC). Haskell's semantics are historically based on those of the Miranda programming language, which served to focus the efforts of the initial Haskell working group. The last formal specification of the language was made in July 2010, while the development of GHC continues to expand Haskell via language extensions. Haskell is used in academia and industry. , Haskell was the 28th most popular programming language by Google searches for tutorials, and made up less than 1% of active users on the GitHub source code repository ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stack (abstract Data Type)
In computer science, a stack is an abstract data type that serves as a collection (abstract data type), collection of elements with two main operations: * Push, which adds an element to the collection, and * Pop, which removes the most recently added element. Additionally, a peek (data type operation), peek operation can, without modifying the stack, return the value of the last element added. The name ''stack'' is an analogy to a set of physical items stacked one atop another, such as a stack of plates. The order in which an element added to or removed from a stack is described as last in, first out, referred to by the acronym LIFO. As with a stack of physical objects, this structure makes it easy to take an item off the top of the stack, but accessing a Data, datum deeper in the stack may require removing multiple other items first. Considered a sequential collection, a stack has one end which is the only position at which the push and pop operations may occur, the ''top'' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Eager Evaluation
In a programming language, an evaluation strategy is a set of rules for evaluating expressions. The term is often used to refer to the more specific notion of a ''parameter-passing strategy'' that defines the kind of value that is passed to the function for each parameter (the ''binding strategy'') and whether to evaluate the parameters of a function call, and if so in what order (the ''evaluation order''). The notion of reduction strategy is distinct, although some authors conflate the two terms and the definition of each term is not widely agreed upon. A programming language's evaluation strategy is part of its high-level semantics. Some languages, such as PureScript, have variants with different evaluation strategies. Some declarative languages, such as Datalog, support multiple evaluation strategies. The calling convention consists of the low-level platform-specific details of parameter passing. Example To illustrate, executing a function call f(a,b) may first evaluat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Call Stack
In computer science, a call stack is a Stack (abstract data type), stack data structure that stores information about the active subroutines and block (programming), inline blocks of a computer program. This type of stack is also known as an execution stack, program stack, control stack, run-time stack, or machine stack, and is often shortened to simply the "stack". Although maintenance of the call stack is important for the proper functioning of most software, the details are normally hidden and automatic in high-level programming languages. Many computer instruction sets provide special instructions for manipulating stacks. A call stack is used for several related purposes, but the main reason for having one is to keep track of the point to which each active subroutine should return control when it finishes executing. An active subroutine is one that has been called, but is yet to complete execution, after which control should be handed back to the point of call. Such activatio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Block (programming)
In computer programming, a block or code block or block of code is a lexical structure of source code which is grouped together. Blocks consist of one or more declarations and statements. A programming language that permits the creation of blocks, including blocks nested within other blocks, is called a block-structured programming language. Blocks are fundamental to structured programming, where control structures are formed from blocks. Blocks have two functions: to group statements so that they can be treated as one statement, and to define scopes for names to distinguish them from the same name used elsewhere. In a block-structured programming language, the objects named in outer blocks are visible inside inner blocks, unless they are masked by an object declared with the same name. History Ideas of block structure were developed in the 1950s during the development of the first autocodes, and were formalized in the Algol 58 and Algol 60 reports. Algol 58 introduced ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
JavaScript
JavaScript (), often abbreviated as JS, is a programming language and core technology of the World Wide Web, alongside HTML and CSS. Ninety-nine percent of websites use JavaScript on the client side for webpage behavior. Web browsers have a dedicated JavaScript engine that executes the client code. These engines are also utilized in some servers and a variety of apps. The most popular runtime system for non-browser usage is Node.js. JavaScript is a high-level, often just-in-time–compiled language that conforms to the ECMAScript standard. It has dynamic typing, prototype-based object-orientation, and first-class functions. It is multi-paradigm, supporting event-driven, functional, and imperative programming styles. It has application programming interfaces (APIs) for working with text, dates, regular expressions, standard data structures, and the Document Object Model (DOM). The ECMAScript standard does not include any input/output (I/O), such as netwo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |