HOME





Lagrange Reversion
In mathematical analysis, the Lagrange inversion theorem, also known as the Lagrange–Bürmann formula, gives the Taylor series expansion of the inverse function of an analytic function. Lagrange inversion is a special case of the inverse function theorem. Statement Suppose is defined as a function of by an equation of the form :z = f(w) where is analytic at a point and f'(a)\neq 0. Then it is possible to ''invert'' or ''solve'' the equation for , expressing it in the form w=g(z) given by a power series : g(z) = a + \sum_^ g_n \frac, where : g_n = \lim_ \frac \left left( \frac \right)^n \right The theorem further states that this series has a non-zero radius of convergence, i.e., g(z) represents an analytic function of in a neighbourhood of z= f(a). This is also called reversion of series. If the assertions about analyticity are omitted, the formula is also valid for formal power series and can be generalized in various ways: It can be formulated for functions of severa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Analysis
Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series (mathematics), series, and analytic functions. These theories are usually studied in the context of Real number, real and Complex number, complex numbers and Function (mathematics), functions. Analysis evolved from calculus, which involves the elementary concepts and techniques of analysis. Analysis may be distinguished from geometry; however, it can be applied to any Space (mathematics), space of mathematical objects that has a definition of nearness (a topological space) or specific distances between objects (a metric space). History Ancient Mathematical analysis formally developed in the 17th century during the Scientific Revolution, but many of its ideas can be traced back to earlier mathematicians. Early results in analysis were ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bell Polynomial
In combinatorial mathematics, the Bell polynomials, named in honor of Eric Temple Bell, are used in the study of set partitions. They are related to Stirling and Bell numbers. They also occur in many applications, such as in Faà di Bruno's formula. Definitions Exponential Bell polynomials The ''partial'' or ''incomplete'' exponential Bell polynomials are a triangular array of polynomials given by :\begin B_(x_1,x_2,\dots,x_) &= \sum \left(\right)^\left(\right)^\cdots\left(\right)^ \\ &= n! \sum \prod_^ \frac, \end where the sum is taken over all sequences ''j''1, ''j''2, ''j''3, ..., ''j''''n''−''k''+1 of non-negative integers such that these two conditions are satisfied: :j_1 + j_2 + \cdots + j_ = k, :j_1 + 2 j_2 + 3 j_3 + \cdots + (n-k+1)j_ = n. The sum :\begin B_n(x_1,\dots,x_n)&=\sum_^n B_(x_1,x_2,\dots,x_)\\ &=n! \sum_ \prod_^n \frac \end is called the ''n''th ''complete exponential Bell polynomial''. Ordinary Bell polynomials Likewise, the partial ''ordinary'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theorems In Real Analysis
In mathematics and formal logic, a theorem is a statement that has been proven, or can be proven. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In mainstream mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice (ZFC), or of a less powerful theory, such as Peano arithmetic. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and ''corollary'' for less important theorems. In mathematical logic, the concepts of theorems and proofs have been formalized in order to allow mathematical reason ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inverse Functions
In mathematics, the inverse function of a function (also called the inverse of ) is a function that undoes the operation of . The inverse of exists if and only if is bijective, and if it exists, is denoted by f^ . For a function f\colon X\to Y, its inverse f^\colon Y\to X admits an explicit description: it sends each element y\in Y to the unique element x\in X such that . As an example, consider the real-valued function of a real variable given by . One can think of as the function which multiplies its input by 5 then subtracts 7 from the result. To undo this, one adds 7 to the input, then divides the result by 5. Therefore, the inverse of is the function f^\colon \R\to\R defined by f^(y) = \frac . Definitions Let be a function whose domain is the set , and whose codomain is the set . Then is ''invertible'' if there exists a function from to such that g(f(x))=x for all x\in X and f(g(y))=y for all y\in Y. If is invertible, then there is exactly one function ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Encyclopedia Of Mathematics
The ''Encyclopedia of Mathematics'' (also ''EOM'' and formerly ''Encyclopaedia of Mathematics'') is a large reference work in mathematics. Overview The 2002 version contains more than 8,000 entries covering most areas of mathematics at a graduate level, and the presentation is technical in nature. The encyclopedia is edited by Michiel Hazewinkel and was published by Kluwer Academic Publishers until 2003, when Kluwer became part of Springer. The CD-ROM contains animations and three-dimensional objects. The encyclopedia has been translated from the Soviet ''Matematicheskaya entsiklopediya'' (1977) originally edited by Ivan Matveevich Vinogradov and extended with comments and three supplements adding several thousand articles. Until November 29, 2011, a static version of the encyclopedia could be browsed online free of charge. This URL now redirects to the new wiki A wiki ( ) is a form of hypertext publication on the internet which is collaboratively edited and manage ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lagrange Reversion Theorem
In mathematics, the Lagrange reversion theorem gives series or formal power series expansions of certain implicitly defined functions; indeed, of compositions with such functions. Let ''v'' be a function of ''x'' and ''y'' in terms of another function ''f'' such that :v=x+yf(v) Then for any function ''g'', for small enough ''y'': :g(v)=g(x)+\sum_^\infty\frac\left(\frac\partial\right)^\left(f(x)^kg'(x)\right). If ''g'' is the identity, this becomes :v=x+\sum_^\infty\frac\left(\frac\partial\right)^\left(f(x)^k\right) In which case the equation can be derived using perturbation theory. In 1770, Joseph Louis Lagrange (1736–1813) published his power series solution of the implicit equation for ''v'' mentioned above. However, his solution used cumbersome series expansions of logarithms. In 1780, Pierre-Simon Laplace (1749–1827) published a simpler proof of the theorem, which was based on relations between partial derivatives with respect to the variable x and the parameter y. Cha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Faà Di Bruno's Formula
Faà di Bruno's formula is an identity in mathematics generalizing the chain rule to higher derivatives. It is named after , although he was not the first to state or prove the formula. In 1800, more than 50 years before Faà di Bruno, the French mathematician Louis François Antoine Arbogast had stated the formula in a calculus textbook, which is considered to be the first published reference on the subject. Perhaps the most well-known form of Faà di Bruno's formula says that f(g(x))=\sum \frac\cdot f^(g(x))\cdot \prod_^n\left(g^(x)\right)^, where the sum is over all n-tuples of nonnegative integers (m_1,\ldots,m_n) satisfying the constraint 1\cdot m_1+2\cdot m_2+3\cdot m_3+\cdots+n\cdot m_n=n. Sometimes, to give it a memorable pattern, it is written in a way in which the coefficients that have the combinatorial interpretation discussed below are less explicit: : f(g(x)) =\sum \frac\cdot f^(g(x))\cdot \prod_^n\left(\frac\right)^. Combining the terms with the same value of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Catalan Number
The Catalan numbers are a sequence of natural numbers that occur in various Enumeration, counting problems, often involving recursion, recursively defined objects. They are named after Eugène Charles Catalan, Eugène Catalan, though they were previously discovered in the 1730s by Minggatu. The -th Catalan number can be expressed directly in terms of the central binomial coefficients by :C_n = \frac = \frac \qquad\textn\ge 0. The first Catalan numbers for are : . Properties An alternative expression for is :C_n = - for n\ge 0\,, which is equivalent to the expression given above because \tbinom=\tfrac\tbinomn. This expression shows that is an integer, which is not immediately obvious from the first formula given. This expression forms the basis for a #Second proof, proof of the correctness of the formula. Another alternative expression is :C_n = \frac \,, which can be directly interpreted in terms of the cycle lemma; see below. The Catalan numbers satisfy the recurr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binary Tree
In computer science, a binary tree is a tree data structure in which each node has at most two children, referred to as the ''left child'' and the ''right child''. That is, it is a ''k''-ary tree with . A recursive definition using set theory is that a binary tree is a triple , where ''L'' and ''R'' are binary trees or the empty set and ''S'' is a singleton (a single–element set) containing the root. From a graph theory perspective, binary trees as defined here are arborescences. A binary tree may thus be also called a bifurcating arborescence, a term which appears in some early programming books before the modern computer science terminology prevailed. It is also possible to interpret a binary tree as an undirected, rather than directed graph, in which case a binary tree is an ordered, rooted tree. Some authors use rooted binary tree instead of ''binary tree'' to emphasize the fact that the tree is rooted, but as defined above, a binary tree is always rooted. In ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Principal Branch
In mathematics, a principal branch is a function which selects one branch point, branch ("slice") of a multi-valued function. Most often, this applies to functions defined on the complex plane. Examples Trigonometric inverses Principal branches are used in the definition of many inverse trigonometric functions, such as the selection either to define that :\arcsin:[-1,+1]\rightarrow\left[-\frac,\frac\right] or that :\arccos:[-1,+1]\rightarrow[0,\pi]. Exponentiation to fractional powers A more familiar principal branch function, limited to real numbers, is that of a positive real number raised to the power of . For example, take the relation , where is any positive real number. This relation can be satisfied by any value of equal to a square root of (either positive or negative). By convention, is used to denote the positive square root of . In this instance, the positive square root function is taken as the principal branch of the multi-valued relation . Complex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Radius Of Convergence
In mathematics, the radius of convergence of a power series is the radius of the largest Disk (mathematics), disk at the Power series, center of the series in which the series Convergent series, converges. It is either a non-negative real number or \infty. When it is positive, the power series absolute convergence, converges absolutely and compact convergence, uniformly on compact sets inside the open disk of radius equal to the radius of convergence, and it is the Taylor series of the analytic function to which it converges. In case of multiple singularities of a function (singularities are those values of the argument for which the function is not defined), the radius of convergence is the shortest or minimum of all the respective distances (which are all non-negative numbers) calculated from the center of the disk of convergence to the respective singularities of the function. Definition For a power series ''f'' defined as: :f(z) = \sum_^\infty c_n (z-a)^n, where *''a'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Combinatorics
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science. Combinatorics is well known for the breadth of the problems it tackles. Combinatorial problems arise in many areas of pure mathematics, notably in algebra, probability theory, topology, and geometry, as well as in its many application areas. Many combinatorial questions have historically been considered in isolation, giving an ''ad hoc'' solution to a problem arising in some mathematical context. In the later twentieth century, however, powerful and general theoretical methods were developed, making combinatorics into an independent branch of mathematics in its own right. One of the oldest and most accessible parts of combinatorics ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]