Kontorovich–Lebedev Transform
   HOME





Kontorovich–Lebedev Transform
In mathematics, the Kontorovich–Lebedev transform is an integral transform which uses a Macdonald function (modified Bessel function of the second kind) with imaginary index as its kernel. Unlike other Bessel function transforms, such as the Hankel transform, this transform involves integrating over the index of the function rather than its argument. The transform of a function ''ƒ''(''x'') and its inverse (provided they exist) are given below: :g(y) = \int_0^\infty f(x) K_(x) \, dx :f(x) = \frac \int_0^\infty g(y) K_(x) \sinh (\pi y) y \, dy . Laguerre previously studied a similar transform regarding Laguerre function In mathematics, the Laguerre polynomials, named after Edmond Laguerre (1834–1886), are solutions of Laguerre's equation: xy'' + (1 - x)y' + ny = 0 which is a second-order linear differential equation. This equation has nonsingular solutions onl ... as: :g(y) = \int_0^\infty f(x)e^ L_(x) \, dx :f(x) = \int_0^\infty \frac L_y(x) \, dy. Erd� ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting poin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Integral Transform
In mathematics, an integral transform maps a function from its original function space into another function space via integration, where some of the properties of the original function might be more easily characterized and manipulated than in the original function space. The transformed function can generally be mapped back to the original function space using the ''inverse transform''. General form An integral transform is any transform ''T'' of the following form: :(Tf)(u) = \int_^ f(t)\, K(t, u)\, dt The input of this transform is a function ''f'', and the output is another function ''Tf''. An integral transform is a particular kind of mathematical operator. There are numerous useful integral transforms. Each is specified by a choice of the function K of two variables, the kernel function, integral kernel or nucleus of the transform. Some kernels have an associated ''inverse kernel'' K^( u,t ) which (roughly speaking) yields an inverse transform: :f(t) = \int_^ (Tf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bessel Function
Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions of Bessel's differential equation x^2 \frac + x \frac + \left(x^2 - \alpha^2 \right)y = 0 for an arbitrary complex number \alpha, the ''order'' of the Bessel function. Although \alpha and -\alpha produce the same differential equation, it is conventional to define different Bessel functions for these two values in such a way that the Bessel functions are mostly smooth functions of \alpha. The most important cases are when \alpha is an integer or half-integer. Bessel functions for integer \alpha are also known as cylinder functions or the cylindrical harmonics because they appear in the solution to Laplace's equation in cylindrical coordinates. #Spherical Bessel functions, Spherical Bessel functions with half-integer \alpha are obtained when the Helmholtz equation is solved in spherical coordinates. Applications of Bessel functions The Bessel f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Imaginary Number
An imaginary number is a real number multiplied by the imaginary unit , is usually used in engineering contexts where has other meanings (such as electrical current) which is defined by its property . The square of an imaginary number is . For example, is an imaginary number, and its square is . By definition, zero is considered to be both real and imaginary. Originally coined in the 17th century by René Descartes as a derogatory term and regarded as fictitious or useless, the concept gained wide acceptance following the work of Leonhard Euler (in the 18th century) and Augustin-Louis Cauchy and Carl Friedrich Gauss (in the early 19th century). An imaginary number can be added to a real number to form a complex number of the form , where the real numbers and are called, respectively, the ''real part'' and the ''imaginary part'' of the complex number. History Although the Greek mathematician and engineer Hero of Alexandria is noted as the first to present a calculation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hankel Transform
In mathematics, the Hankel transform expresses any given function ''f''(''r'') as the weighted sum of an infinite number of Bessel functions of the first kind . The Bessel functions in the sum are all of the same order ν, but differ in a scaling factor ''k'' along the ''r'' axis. The necessary coefficient of each Bessel function in the sum, as a function of the scaling factor ''k'' constitutes the transformed function. The Hankel transform is an integral transform and was first developed by the mathematician Hermann Hankel. It is also known as the Fourier–Bessel transform. Just as the Fourier transform for an infinite interval is related to the Fourier series over a finite interval, so the Hankel transform over an infinite interval is related to the Fourier–Bessel series over a finite interval. Definition The Hankel transform of order \nu of a function ''f''(''r'') is given by : F_\nu(k) = \int_0^\infty f(r) J_\nu(kr) \,r\,\mathrmr, where J_\nu is the Bessel function o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Laguerre Function
In mathematics, the Laguerre polynomials, named after Edmond Laguerre (1834–1886), are solutions of Laguerre's equation: xy'' + (1 - x)y' + ny = 0 which is a second-order linear differential equation. This equation has nonsingular solutions only if is a non-negative integer. Sometimes the name Laguerre polynomials is used for solutions of xy'' + (\alpha + 1 - x)y' + ny = 0~. where is still a non-negative integer. Then they are also named generalized Laguerre polynomials, as will be done here (alternatively associated Laguerre polynomials or, rarely, Sonine polynomials, after their inventor Nikolay Yakovlevich Sonin). More generally, a Laguerre function is a solution when is not necessarily a non-negative integer. The Laguerre polynomials are also used for Gaussian quadrature to numerically compute integrals of the form \int_0^\infty f(x) e^ \, dx. These polynomials, usually denoted , , …, are a polynomial sequence which may be defined by the Rodrigues formula ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Arthur Erdélyi
Arthur Erdélyi FRS, FRSE (2 October 1908 – 12 December 1977) was a Hungarian-born British mathematician. Erdélyi was a leading expert on special functions, particularly orthogonal polynomials and hypergeometric functions. Biography He was born Arthur Diamant in Budapest, Hungary to Ignác Josef Armin Diamant and Frederike Roth. His name was changed to Erdélyi when his mother remarried to Paul Erdélyi. He attended the primary and secondary schools there from 1914 to 1926. His interest in mathematics dates back to this time. Erdélyi was a Jew, and so it was difficult for him to receive a university education in his native Hungary. He travelled to Brno, Czechoslovakia, to obtain a degree in electrical engineering. However, after his flair for mathematics was discovered (he won several prizes in a competition in his first year), he was persuaded to study the subject. He soon after began to conduct theoretical research into mathematics, and his first paper was published ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Laplace's Equation
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as \nabla^2\! f = 0 or \Delta f = 0, where \Delta = \nabla \cdot \nabla = \nabla^2 is the Laplace operator,The delta symbol, Δ, is also commonly used to represent a finite change in some quantity, for example, \Delta x = x_1 - x_2. Its use to represent the Laplacian should not be confused with this use. \nabla \cdot is the divergence operator (also symbolized "div"), \nabla is the gradient operator (also symbolized "grad"), and f (x, y, z) is a twice-differentiable real-valued function. The Laplace operator therefore maps a scalar function to another scalar function. If the right-hand side is specified as a given function, h(x, y, z), we have \Delta f = h. This is called Poisson's equation, a generalization of Laplace's equation. Laplace's equation and Poisson's equation are the simplest exa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cylindrical Coordinate System
A cylindrical coordinate system is a three-dimensional coordinate system that specifies point positions by the distance from a chosen reference axis ''(axis L in the image opposite)'', the direction from the axis relative to a chosen reference direction ''(axis A)'', and the distance from a chosen reference plane perpendicular to the axis ''(plane containing the purple section)''. The latter distance is given as a positive or negative number depending on which side of the reference plane faces the point. The ''origin'' of the system is the point where all three coordinates can be given as zero. This is the intersection between the reference plane and the axis. The axis is variously called the ''cylindrical'' or ''longitudinal'' axis, to differentiate it from the ''polar axis'', which is the ray that lies in the reference plane, starting at the origin and pointing in the reference direction. Other directions perpendicular to the longitudinal axis are called ''radial lines''. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Separation Of Variables
In mathematics, separation of variables (also known as the Fourier method) is any of several methods for solving ordinary and partial differential equations, in which algebra allows one to rewrite an equation so that each of two variables occurs on a different side of the equation. Ordinary differential equations (ODE) Suppose a differential equation can be written in the form :\frac f(x) = g(x)h(f(x)) which we can write more simply by letting y = f(x): :\frac=g(x)h(y). As long as ''h''(''y'') ≠ 0, we can rearrange terms to obtain: : = g(x) \, dx, so that the two variables ''x'' and ''y'' have been separated. ''dx'' (and ''dy'') can be viewed, at a simple level, as just a convenient notation, which provides a handy mnemonic aid for assisting with manipulations. A formal definition of ''dx'' as a differential (infinitesimal) is somewhat advanced. Alternative notation Those who dislike Leibniz's notation may prefer to write this as :\frac \frac = g(x), but tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Integral Transforms
In mathematics, an integral transform maps a function from its original function space into another function space via integration, where some of the properties of the original function might be more easily characterized and manipulated than in the original function space. The transformed function can generally be mapped back to the original function space using the ''inverse transform''. General form An integral transform is any transform ''T'' of the following form: :(Tf)(u) = \int_^ f(t)\, K(t, u)\, dt The input of this transform is a function ''f'', and the output is another function ''Tf''. An integral transform is a particular kind of mathematical operator. There are numerous useful integral transforms. Each is specified by a choice of the function K of two variables, the kernel function, integral kernel or nucleus of the transform. Some kernels have an associated ''inverse kernel'' K^( u,t ) which (roughly speaking) yields an inverse transform: :f(t) = \int_^ (Tf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]