Kolmogorov's Generalized Criterion
   HOME





Kolmogorov's Generalized Criterion
In probability theory, Kolmogorov's criterion, named after Andrey Kolmogorov, is a theorem giving a necessary and sufficient condition for a Markov chain or continuous-time Markov chain to be stochastically identical to its time-reversed version. Discrete-time Markov chains The theorem states that an irreducible, positive recurrent, aperiodic Markov chain with transition matrix ''P'' is reversible if and only if its stationary Markov chain satisfies : p_ p_ \cdots p_ p_ = p_ p_ \cdots p_ p_ for all finite sequences of states : j_1, j_2, \ldots, j_n \in S . Here ''pij'' are components of the transition matrix ''P'', and ''S'' is the state space of the chain. That is, the chain-multiplication along any cycle is the same forwards and backwards. Example Consider this figure depicting a section of a Markov chain with states ''i'', ''j'', ''k'' and ''l'' and the corresponding transition probabilities. Here Kolmogorov's criterion implies that the product of probabilities when t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probability Theory
Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms of probability, axioms. Typically these axioms formalise probability in terms of a probability space, which assigns a measure (mathematics), measure taking values between 0 and 1, termed the probability measure, to a set of outcomes called the sample space. Any specified subset of the sample space is called an event (probability theory), event. Central subjects in probability theory include discrete and continuous random variables, probability distributions, and stochastic processes (which provide mathematical abstractions of determinism, non-deterministic or uncertain processes or measured Quantity, quantities that may either be single occurrences or evolve over time in a random fashion). Although it is no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Andrey Kolmogorov
Andrey Nikolaevich Kolmogorov ( rus, Андре́й Никола́евич Колмого́ров, p=ɐnˈdrʲej nʲɪkɐˈlajɪvʲɪtɕ kəlmɐˈɡorəf, a=Ru-Andrey Nikolaevich Kolmogorov.ogg, 25 April 1903 – 20 October 1987) was a Soviet mathematician who played a central role in the creation of modern probability theory. He also contributed to the mathematics of topology, intuitionistic logic, turbulence, classical mechanics, algorithmic information theory and Analysis of algorithms, computational complexity. Biography Early life Andrey Kolmogorov was born in Tambov, about 500 kilometers southeast of Moscow, in 1903. His unmarried mother, Maria Yakovlevna Kolmogorova, died giving birth to him. Andrey was raised by two of his aunts in Tunoshna (near Yaroslavl) at the estate of his grandfather, a well-to-do Russian nobility, nobleman. Little is known about Andrey's father. He was supposedly named Nikolai Matveyevich Katayev and had been an Agronomy, agronomist. Katayev ha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theorem
In mathematics and formal logic, a theorem is a statement (logic), statement that has been Mathematical proof, proven, or can be proven. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In mainstream mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice (ZFC), or of a less powerful theory, such as Peano arithmetic. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and ''corollary'' for less important theorems. In mathematical logic, the concepts of theorems and proofs have been formal system ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Markov Chain
In probability theory and statistics, a Markov chain or Markov process is a stochastic process describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event. Informally, this may be thought of as, "What happens next depends only on the state of affairs ''now''." A countably infinite sequence, in which the chain moves state at discrete time steps, gives a discrete-time Markov chain (DTMC). A continuous-time process is called a continuous-time Markov chain (CTMC). Markov processes are named in honor of the Russian mathematician Andrey Markov. Markov chains have many applications as statistical models of real-world processes. They provide the basis for general stochastic simulation methods known as Markov chain Monte Carlo, which are used for simulating sampling from complex probability distributions, and have found application in areas including Bayesian statistics, biology, chemistry, economics, fin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Continuous-time Markov Chain
A continuous-time Markov chain (CTMC) is a continuous stochastic process in which, for each state, the process will change state according to an exponential random variable and then move to a different state as specified by the probabilities of a stochastic matrix. An equivalent formulation describes the process as changing state according to the least value of a set of exponential random variables, one for each possible state it can move to, with the parameters determined by the current state. An example of a CTMC with three states \ is as follows: the process makes a transition after the amount of time specified by the holding time—an exponential random variable E_i, where ''i'' is its current state. Each random variable is independent and such that E_0\sim \text(6), E_1\sim \text(12) and E_2\sim \text(18). When a transition is to be made, the process moves according to the jump chain, a discrete-time Markov chain with stochastic matrix: :\begin 0 & \frac & \frac \\ \frac & 0 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stochastic Matrix
In mathematics, a stochastic matrix is a square matrix used to describe the transitions of a Markov chain. Each of its entries is a nonnegative real number representing a probability. It is also called a probability matrix, transition matrix, ''substitution matrix'', or Markov matrix. The stochastic matrix was first developed by Andrey Markov at the beginning of the 20th century, and has found use throughout a wide variety of scientific fields, including probability theory, statistics, mathematical finance and linear algebra, as well as computer science and population genetics. There are several different definitions and types of stochastic matrices: *A right stochastic matrix is a square matrix of nonnegative real numbers, with each row summing to 1 (so it is also called a row stochastic matrix). *A left stochastic matrix is a square matrix of nonnegative real numbers, with each column summing to 1 (so it is also called a column stochastic matrix). *A ''doubly stochastic matrix'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Time Reversibility
In mathematics and physics, time-reversibility is the property (mathematics), property of a process whose governing rules remain unchanged when the direction of its sequence of actions is reversed. A deterministic process is time-reversible if the time-reversed process satisfies the same dynamic equation (other), dynamic equations as the original process; in other words, the equations are invariant (mathematics), invariant or symmetrical under a change in the Sign (mathematics), sign of time. A stochastic process is reversible if the statistical properties of the process are the same as the statistical properties for time-reversed data from the same process. Mathematics In mathematics, a dynamical system is time-reversible if the forward evolution is one-to-one function, one-to-one, so that for every state there exists a transformation (an Involution (mathematics), involution) π which gives a one-to-one mapping between the time-reversed evolution of any one state and t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kolmogorov Criterion Dtmc
Andrey Nikolaevich Kolmogorov ( rus, Андре́й Никола́евич Колмого́ров, p=ɐnˈdrʲej nʲɪkɐˈlajɪvʲɪtɕ kəlmɐˈɡorəf, a=Ru-Andrey Nikolaevich Kolmogorov.ogg, 25 April 1903 – 20 October 1987) was a Soviet mathematician who played a central role in the creation of modern probability theory. He also contributed to the mathematics of topology, intuitionistic logic, turbulence, classical mechanics, algorithmic information theory and computational complexity. Biography Early life Andrey Kolmogorov was born in Tambov, about 500 kilometers southeast of Moscow, in 1903. His unmarried mother, Maria Yakovlevna Kolmogorova, died giving birth to him. Andrey was raised by two of his aunts in Tunoshna (near Yaroslavl) at the estate of his grandfather, a well-to-do nobleman. Little is known about Andrey's father. He was supposedly named Nikolai Matveyevich Katayev and had been an agronomist. Katayev had been exiled from Saint Petersburg to the Yarosla ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transition Rate Matrix
In probability theory, a transition-rate matrix (also known as a Q-matrix, intensity matrix, or infinitesimal generator matrix) is an array of numbers describing the instantaneous rate at which a continuous-time Markov chain A continuous-time Markov chain (CTMC) is a continuous stochastic process in which, for each state, the process will change state according to an exponential random variable and then move to a different state as specified by the probabilities of a ... transitions between states. In a transition-rate matrix Q (sometimes written A), element q_ (for i \neq j) denotes the rate departing from i and arriving in state j. The rates q_ \geq 0, and the diagonal elements q_ are defined such that :q_ = -\sum_ q_, and therefore the rows of the matrix sum to zero. Up to a global sign, a large class of examples of such matrices is provided by the Laplacian of a directed, weighted graph. The vertices of the graph correspond to the Markov chain's states. Properties The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]