Kolmogorov–Smirnov Test
In statistics, the Kolmogorov–Smirnov test (K–S test or KS test) is a nonparametric test of the equality of continuous (or discontinuous, see Section 2.2), one-dimensional probability distributions that can be used to compare a sample with a reference probability distribution (one-sample K–S test), or to compare two samples (two-sample K–S test). In essence, the test answers the question "What is the probability that this collection of samples could have been drawn from that probability distribution?" or, in the second case, "What is the probability that these two sets of samples were drawn from the same (but unknown) probability distribution?". It is named after Andrey Kolmogorov and Nikolai Smirnov. The Kolmogorov–Smirnov statistic quantifies a distance between the empirical distribution function of the sample and the cumulative distribution function of the reference distribution, or between the empirical distribution functions of two samples. The null dis ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
KS Example
KS and variants may refer to: Businesses and organizations * , a German postwar commando frogman force * , a Norwegian type of company * Norwegian Association of Local and Regional Authorities * PenAir, Peninsula Airways, Anchorage, Alaska, US (IATA airline code) Language * Kashmiri language, a Dardic language of Kashmir (ISO 639 alpha-2 language code "ks") * Kernowek Standard, an orthography for Revived Cornish * Kiasu, Hokkien (a Chinese spoken variant) word for 'extreme fear of losing' (怕输) * Sound of the Latin letter X in many languages Places * Kansas (US postal abbreviation KS) * South Kalimantan, Indonesia (ISO 3166-2 province code) * Krems an der Donau, Austria (vehicle plate code) * Kassel, Germany (vehicle plate code) * Khatumo State, an unrecognised proto-state in northern Somalia * Northampton, Great Britain (vehicle plate code) * Košice-okolie District, Slovakia (vehicle plate code) Science, technology, and mathematics * Kaposi's sarcoma, a tumor caused by Hum ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Normal Distribution
In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is : f(x) = \frac e^ The parameter \mu is the mean or expectation of the distribution (and also its median and mode), while the parameter \sigma is its standard deviation. The variance of the distribution is \sigma^2. A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate. Normal distributions are important in statistics and are often used in the natural and social sciences to represent real-valued random variables whose distributions are not known. Their importance is partly due to the central limit theorem. It states that, under some conditions, the average of many samples (observations) of a random variable with finite mean and variance is itself a random variable—whose distribution converges to a normal dist ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Brownian Bridge
A Brownian bridge is a continuous-time stochastic process ''B''(''t'') whose probability distribution is the conditional probability distribution of a standard Wiener process ''W''(''t'') (a mathematical model of Brownian motion) subject to the condition (when standardized) that ''W''(''T'') = 0, so that the process is pinned to the same value at both ''t'' = 0 and ''t'' = ''T''. More precisely: : B_t := (W_t\mid W_T=0),\;t \in ,T The expected value of the bridge at any ''t'' in the interval ,''T''is zero, with variance \textstyle\frac, implying that the most uncertainty is in the middle of the bridge, with zero uncertainty at the nodes. The covariance of ''B''(''s'') and ''B''(''t'') is \min(s,t)-\frac, or ''s''(T − ''t'')/T if ''s'' < ''t''. The increments in a Brownian bridge are not independent. Relation to other stochastic processes If ''W''(''t'') is a standard Wiener process (i.e., for ''t'' ≥&nbs ...[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Random Variable
A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. It is a mapping or a function from possible outcomes (e.g., the possible upper sides of a flipped coin such as heads H and tails T) in a sample space (e.g., the set \) to a measurable space, often the real numbers (e.g., \ in which 1 corresponding to H and -1 corresponding to T). Informally, randomness typically represents some fundamental element of chance, such as in the roll of a dice; it may also represent uncertainty, such as measurement error. However, the interpretation of probability is philosophically complicated, and even in specific cases is not always straightforward. The purely mathematical analysis of random variables is independent of such interpretational difficulties, and can be based upon a rigorous axiomatic setup. In the formal mathematical language of measure theory, a rando ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Donsker's Theorem
In probability theory, Donsker's theorem (also known as Donsker's invariance principle, or the functional central limit theorem), named after Monroe D. Donsker, is a functional extension of the central limit theorem. Let X_1, X_2, X_3, \ldots be a sequence of independent and identically distributed (i.i.d.) random variables with mean 0 and variance 1. Let S_n:=\sum_^n X_i. The stochastic process S:=(S_n)_ is known as a random walk. Define the diffusively rescaled random walk (partial-sum process) by : W^(t) := \frac, \qquad t\in ,1 The central limit theorem asserts that W^(1) converges in distribution to a standard Gaussian random variable W(1) as n\to\infty. Donsker's invariance principle extends this convergence to the whole function W^:=(W^(t))_. More precisely, in its modern form, Donsker's invariance principle states that: As random variables taking values in the Skorokhod space \mathcal ,1/math>, the random function W^ converges in distribution to a standard Brownian ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Almost Surely
In probability theory, an event is said to happen almost surely (sometimes abbreviated as a.s.) if it happens with probability 1 (or Lebesgue measure 1). In other words, the set of possible exceptions may be non-empty, but it has probability 0. The concept is analogous to the concept of " almost everywhere" in measure theory. In probability experiments on a finite sample space, there is no difference between ''almost surely'' and ''surely'' (since having a probability of 1 often entails including all the sample points). However, this distinction becomes important when the sample space is an infinite set, because an infinite set can have non-empty subsets of probability 0. Some examples of the use of this concept include the strong and uniform versions of the law of large numbers, and the continuity of the paths of Brownian motion. The terms almost certainly (a.c.) and almost always (a.a.) are also used. Almost never describes the opposite of ''almost surely'': an event ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Glivenko–Cantelli Theorem
In the theory of probability, the Glivenko–Cantelli theorem (sometimes referred to as the Fundamental Theorem of Statistics), named after Valery Ivanovich Glivenko and Francesco Paolo Cantelli, determines the asymptotic behaviour of the empirical distribution function as the number of independent and identically distributed observations grows. The uniform convergence of more general empirical measures becomes an important property of the Glivenko–Cantelli classes of functions or sets. The Glivenko–Cantelli classes arise in Vapnik–Chervonenkis theory, with applications to machine learning. Applications can be found in econometrics making use of M-estimators. Statement Assume that X_1,X_2,\dots are independent and identically distributed random variables in \mathbb with common cumulative distribution function F(x). The ''empirical distribution function'' for X_1,\dots,X_n is defined by :F_n(x)=\frac\sum_^n I_(x) = \frac\left, \left\\ where I_C is the indicator fun ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Supremum
In mathematics, the infimum (abbreviated inf; plural infima) of a subset S of a partially ordered set P is a greatest element in P that is less than or equal to each element of S, if such an element exists. Consequently, the term ''greatest lower bound'' (abbreviated as ) is also commonly used. The supremum (abbreviated sup; plural suprema) of a subset S of a partially ordered set P is the least element in P that is greater than or equal to each element of S, if such an element exists. Consequently, the supremum is also referred to as the ''least upper bound'' (or ). The infimum is in a precise sense dual to the concept of a supremum. Infima and suprema of real numbers are common special cases that are important in analysis, and especially in Lebesgue integration. However, the general definitions remain valid in the more abstract setting of order theory where arbitrary partially ordered sets are considered. The concepts of infimum and supremum are close to minimum and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Statistic
A statistic (singular) or sample statistic is any quantity computed from values in a sample which is considered for a statistical purpose. Statistical purposes include estimating a population parameter, describing a sample, or evaluating a hypothesis. The average (or mean) of sample values is a statistic. The term statistic is used both for the function and for the value of the function on a given sample. When a statistic is being used for a specific purpose, it may be referred to by a name indicating its purpose. When a statistic is used for estimating a population parameter, the statistic is called an '' estimator''. A population parameter is any characteristic of a population under study, but when it is not feasible to directly measure the value of a population parameter, statistical methods are used to infer the likely value of the parameter on the basis of a statistic computed from a sample taken from the population. For example, the sample mean is an unbiased estimato ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Indicator Function
In mathematics, an indicator function or a characteristic function of a subset of a set is a function that maps elements of the subset to one, and all other elements to zero. That is, if is a subset of some set , one has \mathbf_(x)=1 if x\in A, and \mathbf_(x)=0 otherwise, where \mathbf_A is a common notation for the indicator function. Other common notations are I_A, and \chi_A. The indicator function of is the Iverson bracket of the property of belonging to ; that is, :\mathbf_(x)= \in A For example, the Dirichlet function is the indicator function of the rational numbers as a subset of the real numbers. Definition The indicator function of a subset of a set is a function \mathbf_A \colon X \to \ defined as \mathbf_A(x) := \begin 1 ~&\text~ x \in A~, \\ 0 ~&\text~ x \notin A~. \end The Iverson bracket provides the equivalent notation, \in A/math> or to be used instead of \mathbf_(x)\,. The function \mathbf_A is sometimes denoted , , , or even just . ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Independent And Identically Distributed Random Variables
In probability theory and statistics, a collection of random variables is independent and identically distributed if each random variable has the same probability distribution as the others and all are mutually independent. This property is usually abbreviated as ''i.i.d.'', ''iid'', or ''IID''. IID was first defined in statistics and finds application in different fields such as data mining and signal processing. Introduction In statistics, we commonly deal with random samples. A random sample can be thought of as a set of objects that are chosen randomly. Or, more formally, it’s “a sequence of independent, identically distributed (IID) random variables”. In other words, the terms ''random sample'' and ''IID'' are basically one and the same. In statistics, we usually say “random sample,” but in probability it’s more common to say “IID.” * Identically Distributed means that there are no overall trends–the distribution doesn’t fluctuate and all items in th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |