Koenigs Function
In mathematics, the Koenigs function is a function arising in complex analysis and dynamical systems. Introduced in 1884 by the French mathematician Gabriel Koenigs, it gives a canonical representation as dilations of a univalent function, univalent holomorphic mapping, or a semigroup of mappings, of the unit disk in the complex numbers into itself. Existence and uniqueness of Koenigs function Let ''D'' be the unit disk in the complex numbers. Let be a holomorphic function mapping ''D'' into itself, fixing the point 0, with not identically 0 and not an automorphism of ''D'', i.e. a Möbius transformation defined by a matrix in SU(1,1). By the Denjoy-Wolff theorem, leaves invariant each disk , ''z'' , < ''r'' and the iterates of converge uniformly on compacta to 0: in fact for 0 < < 1, : for , ''z'' , ≤ ''r'' with ''M''(''r'' ) < 1. Moreover '(0) = with 0 < , , < 1. proved that there is a unique holomorphic function ''h'' defined ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Uniform Limit
In the mathematical field of analysis, uniform convergence is a mode of convergence of functions stronger than pointwise convergence. A sequence of functions (f_n) converges uniformly to a limiting function f on a set E as the function domain if, given any arbitrarily small positive number \varepsilon, a number N can be found such that each of the functions f_N, f_,f_,\ldots differs from f by no more than \varepsilon ''at every point'' x ''in'' E. Described in an informal way, if f_n converges to f uniformly, then how quickly the functions f_n approach f is "uniform" throughout E in the following sense: in order to guarantee that f_n(x) differs from f(x) by less than a chosen distance \varepsilon, we only need to make sure that n is larger than or equal to a certain N, which we can find without knowing the value of x\in E in advance. In other words, there exists a number N=N(\varepsilon) that could depend on \varepsilon but is ''independent of x'', such that choosing n\geq N wi ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Complex Analysis
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic geometry, number theory, analytic combinatorics, and applied mathematics, as well as in physics, including the branches of hydrodynamics, thermodynamics, quantum mechanics, and twistor theory. By extension, use of complex analysis also has applications in engineering fields such as nuclear, aerospace, mechanical and electrical engineering. As a differentiable function of a complex variable is equal to the sum function given by its Taylor series (that is, it is analytic), complex analysis is particularly concerned with analytic functions of a complex variable, that is, '' holomorphic functions''. The concept can be extended to functions of several complex variables. Complex analysis is contrasted with real analysis, which dea ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Star Domain
In geometry, a set S in the Euclidean space \R^n is called a star domain (or star-convex set, star-shaped set or radially convex set) if there exists an s_0 \in S such that for all s \in S, the line segment from s_0 to s lies in S. This definition is immediately generalizable to any real, or complex, vector space. Intuitively, if one thinks of S as a region surrounded by a wall, S is a star domain if one can find a vantage point s_0 in S from which any point s in S is within line-of-sight. A similar, but distinct, concept is that of a radial set. Definition Given two points x and y in a vector space X (such as Euclidean space \R^n), the convex hull of \ is called the and it is denoted by \left , y\right~:=~ \left\ ~=~ x + (y - x) , 1 where z , 1:= \ for every vector z. A subset S of a vector space X is said to be s_0 \in S if for every s \in S, the closed interval \left _0, s\right\subseteq S. A set S is and is called a if there exists some point s_0 \in S such that S ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Iterated Function
In mathematics, an iterated function is a function that is obtained by composing another function with itself two or several times. The process of repeatedly applying the same function is called iteration. In this process, starting from some initial object, the result of applying a given function is fed again into the function as input, and this process is repeated. For example, on the image on the right: : Iterated functions are studied in computer science, fractals, dynamical systems, mathematics and renormalization group physics. Definition The formal definition of an iterated function on a set ''X'' follows. Let be a set and be a function. Defining as the ''n''-th iterate of , where ''n'' is a non-negative integer, by: f^0 ~ \stackrel ~ \operatorname_X and f^ ~ \stackrel ~ f \circ f^, where is the identity function on and denotes function composition. This notation has been traced to and John Frederick William Herschel in 1813. Herschel credited ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Hurwitz's Theorem (complex Analysis)
In mathematics and in particular the field of complex analysis, Hurwitz's theorem is a theorem associating the zeroes of a sequence of holomorphic, compact locally uniformly convergent functions with that of their corresponding limit. The theorem is named after Adolf Hurwitz. Statement Let be a sequence of holomorphic functions on a connected open set ''G'' that converge uniformly on compact subsets of ''G'' to a holomorphic function ''f'' which is not constantly zero on ''G''. If ''f'' has a zero of order ''m'' at ''z''0 then for every small enough ''ρ'' > 0 and for sufficiently large ''k'' ∈ N (depending on ''ρ''), ''fk'' has precisely ''m'' zeroes in the disk defined by , ''z'' − ''z''0, 0 such that ''f''(''z'') ≠ 0 in 0 ''δ'' for ''z'' on the circle , ''z'' − ''z''0, = ''ρ''. Since ''fk''(''z'') converges uniformly on the disc we have chosen, we can find ''N'' such that , ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Weierstrass M-test
In mathematics, the Weierstrass M-test is a test for determining whether an infinite series of functions converges uniformly and absolutely. It applies to series whose terms are bounded functions with real or complex values, and is analogous to the comparison test for determining the convergence of series of real or complex numbers. It is named after the German mathematician Karl Weierstrass (1815–1897). Statement Weierstrass M-test. Suppose that (''f''''n'') is a sequence of real- or complex-valued functions defined on a set ''A'', and that there is a sequence of non-negative numbers (''M''''n'') satisfying the conditions * , f_n(x), \leq M_n for all n \geq 1 and all x \in A, and * \sum_^ M_n converges. Then the series :\sum_^ f_n (x) converges absolutely and uniformly on ''A''. A series satisfying the hypothesis is called '' normally convergent''. The result is often used in combination with the uniform limit theorem. Together they say that if, in addition to the ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Schwarz Lemma
In mathematics, the Schwarz lemma, named after Hermann Amandus Schwarz, is a result in complex differential geometry that estimates the (squared) pointwise norm , \partial f , ^2 of a holomorphic map f:(X,g_X) \to (Y,g_Y) between Hermitian manifolds under curvature assumptions on g_X and g_Y. The classical Schwarz lemma is a result in complex analysis typically viewed to be about holomorphic functions from the open set, open unit disk \mathbb := \to itself. The Schwarz lemma has opened several branches of complex geometry, and become an essential tool in the use of geometric PDE methods in complex geometry. Statement of the classical Schwarz Lemma Let \mathbf = \ be the open unit disk in the complex number, complex plane \mathbb centered at the origin (mathematics), origin, and let f : \mathbf\rightarrow \mathbb be a holomorphic map such that f(0) = 0 and , f(z), \leq 1 on \mathbf. Then , f(z), \leq , z, for all z \in \mathbf, and , f'(0), \leq 1. Moreover, if , f(z), = ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Power Series
In mathematics, a power series (in one variable) is an infinite series of the form \sum_^\infty a_n \left(x - c\right)^n = a_0 + a_1 (x - c) + a_2 (x - c)^2 + \dots where ''a_n'' represents the coefficient of the ''n''th term and ''c'' is a constant called the ''center'' of the series. Power series are useful in mathematical analysis, where they arise as Taylor series of infinitely differentiable functions. In fact, Borel's theorem implies that every power series is the Taylor series of some smooth function. In many situations, the center ''c'' is equal to zero, for instance for Maclaurin series. In such cases, the power series takes the simpler form \sum_^\infty a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots. The partial sums of a power series are polynomials, the partial sums of the Taylor series of an analytic function are a sequence of converging polynomial approximations to the function at the center, and a converging power series can be seen as a kind of generalized polynom ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Compact Space
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and -\infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces. One suc ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Schröder's Equation
Schröder's equation, named after Ernst Schröder, is a functional equation with one independent variable: given the function , find the function such that Schröder's equation is an eigenvalue equation for the composition operator that sends a function to . If is a fixed point of , meaning , then either (or ) or . Thus, provided that is finite and does not vanish or diverge, the eigenvalue is given by . Functional significance For , if is analytic on the unit disk, fixes , and , then Gabriel Koenigs showed in 1884 that there is an analytic (non-trivial) satisfying Schröder's equation. This is one of the first steps in a long line of theorems fruitful for understanding composition operators on analytic function spaces, cf. Koenigs function. Equations such as Schröder's are suitable to encoding self-similarity, and have thus been extensively utilized in studies of nonlinear dynamics (often referred to colloquially as chaos theory). It is also used in studies of ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Complex Analysis
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic geometry, number theory, analytic combinatorics, and applied mathematics, as well as in physics, including the branches of hydrodynamics, thermodynamics, quantum mechanics, and twistor theory. By extension, use of complex analysis also has applications in engineering fields such as nuclear, aerospace, mechanical and electrical engineering. As a differentiable function of a complex variable is equal to the sum function given by its Taylor series (that is, it is analytic), complex analysis is particularly concerned with analytic functions of a complex variable, that is, '' holomorphic functions''. The concept can be extended to functions of several complex variables. Complex analysis is contrasted with real analysis, which dea ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |