HOME
*





Kneser's Theorem (differential Equations)
In mathematics, the Kneser theorem can refer to two distinct theorems in the field of ordinary differential equations: * the first one, named after Adolf Kneser, provides criteria to decide whether a differential equation is oscillating or not; * the other one, named after Hellmuth Kneser, is about the topology In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ho ... of the set of all solutions of an initial value problem with continuous right hand side. Statement of the theorem due to A. Kneser Consider an ordinary linear homogeneous differential equation of the form :y'' + q(x)y = 0 with :q: continuous. We say this equation is ''oscillating'' if it has a solution ''y'' with infinitely many zeros, and ''non-oscillating'' otherwise. The theorem states that the equation is non-os ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting poin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ordinary Differential Equation
In mathematics, an ordinary differential equation (ODE) is a differential equation whose unknown(s) consists of one (or more) function(s) of one variable and involves the derivatives of those functions. The term ''ordinary'' is used in contrast with the term partial differential equation which may be with respect to ''more than'' one independent variable. Differential equations A linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form :a_0(x)y +a_1(x)y' + a_2(x)y'' +\cdots +a_n(x)y^+b(x)=0, where , ..., and are arbitrary differentiable functions that do not need to be linear, and are the successive derivatives of the unknown function of the variable . Among ordinary differential equations, linear differential equations play a prominent role for several reasons. Most elementary and special functions that are encountered in physics and applied mathem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adolf Kneser
Adolf Kneser (19 March 1862 – 24 January 1930) was a German mathematician. He was born in Grüssow, Mecklenburg, Germany and died in Breslau, Germany (now Wrocław, Poland). He is the father of the mathematician Hellmuth Kneser and the grandfather of the mathematician Martin Kneser. Kneser is known for the first proof of the four-vertex theorem that applied in general to non-convex curves. Kneser's theorem on differential equations is named after him, and provides criteria to decide whether a differential equation is oscillating. He is also one of the namesakes of the Tait–Kneser theorem on osculating circle In differential geometry of curves, the osculating circle of a sufficiently smooth plane curve at a given point ''p'' on the curve has been traditionally defined as the circle passing through ''p'' and a pair of additional points on the curve ...s. Selected publications * *; *; * * References External links * * 1862 births 1930 deaths 19th-century ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Oscillation Theory
In mathematics, in the field of ordinary differential equations, a nontrivial solution to an ordinary differential equation :F(x,y,y',\ \dots,\ y^)=y^ \quad x \in spectrum of associated boundary value problems. Examples The differential equation :y'' + y = 0 is oscillating as sin(''x'') is a solution. Connection with spectral theory Oscillation theory was initiated by Jacques Charles François Sturm in his investigations of Sturm–Liouville problems from 1836. There he showed that the n'th eigenfunction of a Sturm–Liouville problem has precisely n-1 roots. For the one-dimensional Schrödinger equation the question about oscillation/non-oscillation answers the question whether the eigenvalues accumulate at the bottom of the continuous spectrum. Relative oscillation theory In 1996 Gesztesy– Simon– Teschl showed that the number of roots of the Wronski determinant of two eigenfunctions of a Sturm–Liouville problem gives the number of eigenvalues between the corr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hellmuth Kneser
Hellmuth Kneser (16 April 1898 – 23 August 1973) was a Baltic German mathematician, who made notable contributions to group theory and topology. His most famous result may be his theorem on the existence of a prime decomposition for 3-manifolds. His proof originated the concept of normal surface, a fundamental cornerstone of the theory of 3-manifolds. He was born in Dorpat, Russian Empire (now Tartu, Estonia) and died in Tübingen, Germany. He was the son of the mathematician Adolf Kneser and the father of the mathematician Martin Kneser. He assisted Wilhelm Süss in the founding of the Mathematical Research Institute of Oberwolfach and served as the director of the institute from 1958 to 1959. He was an editor of Mathematische Zeitschrift, Archiv der Mathematik and Aequationes Mathematicae. Kneser formulated the problem of non-integer iteration of functions and proved the existence of the entire Abel function of the exponential; on the base of this Abel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Topology
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a set endowed with a structure, called a ''topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity. Euclidean spaces, and, more generally, metric spaces are examples of a topological space, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and homotopies. A property that is invariant under such deformations is a topological property. Basic examples of topological properties are: the dimension, which allows distinguishing between a line and a surface; compactness, which allows distinguishing between a line and a circle; connectedne ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Initial Value Problem
In multivariable calculus, an initial value problem (IVP) is an ordinary differential equation together with an initial condition which specifies the value of the unknown function at a given point in the domain. Modeling a system in physics or other sciences frequently amounts to solving an initial value problem. In that context, the differential initial value is an equation which specifies how the system evolves with time given the initial conditions of the problem. Definition An initial value problem is a differential equation :y'(t) = f(t, y(t)) with f\colon \Omega \subset \mathbb \times \mathbb^n \to \mathbb^n where \Omega is an open set of \mathbb \times \mathbb^n, together with a point in the domain of f :(t_0, y_0) \in \Omega, called the initial condition. A solution to an initial value problem is a function y that is a solution to the differential equation and satisfies :y(t_0) = y_0. In higher dimensions, the differential equation is replaced with a family of equ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Continuous Function
In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value, known as '' discontinuities''. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is . Up until the 19th century, mathematicians largely relied on intuitive notions of continuity, and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces. The latter are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe was the first president and Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance, due to concerns about competing with the American Journal of Mathematics. The result was the '' Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influential ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Providence, Rhode Island
Providence is the capital and most populous city of the U.S. state of Rhode Island. One of the oldest cities in New England, it was founded in 1636 by Roger Williams, a Reformed Baptist theologian and religious exile from the Massachusetts Bay Colony. He named the area in honor of "God's merciful Providence" which he believed was responsible for revealing such a haven for him and his followers. The city developed as a busy port as it is situated at the mouth of the Providence River in Providence County, at the head of Narragansett Bay. Providence was one of the first cities in the country to industrialize and became noted for its textile manufacturing and subsequent machine tool, jewelry, and silverware industries. Today, the city of Providence is home to eight hospitals and List of colleges and universities in Rhode Island#Institutions, eight institutions of higher learning which have shifted the city's economy into service industries, though it still retains some manufacturin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sturm–Picone Comparison Theorem
In mathematics, in the field of ordinary differential equations, the Sturm–Picone comparison theorem, named after Jacques Charles François Sturm and Mauro Picone, is a classical theorem which provides criteria for the oscillation and non-oscillation of solutions of certain linear differential equations in the real domain. Let , for be real-valued continuous functions on the interval and let #(p_1(x) y^\prime)^\prime + q_1(x) y = 0 #(p_2(x) y^\prime)^\prime + q_2(x) y = 0 be two homogeneous linear second order differential equations in self-adjoint form with :0 < p_2(x) \le p_1(x) and :q_1(x) \le q_2(x). Let be a non-trivial solution of (1) with successive roots at and and let be a non-trivial solution of (2). Then one of the following properties holds. *There exists an in such that or *there exists a in such that . The first part of the conclusion is due to Sturm (1836), while the second (alternative) part of the theorem is due to Picone (1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Peano Existence Theorem
In mathematics, specifically in the study of ordinary differential equations, the Peano existence theorem, Peano theorem or Cauchy–Peano theorem, named after Giuseppe Peano and Augustin-Louis Cauchy, is a fundamental theorem which guarantees the existence of solutions to certain initial value problems. History Peano first published the theorem in 1886 with an incorrect proof. In 1890 he published a new correct proof using successive approximations. Theorem Let D be an open subset of \mathbb\times\mathbb with f\colon D \to \mathbb a continuous function and y'(x) = f\left(x,y(x)\right) a continuous, explicit first-order differential equation defined on ''D'', then every initial value problem y\left(x_0\right) = y_0 for ''f'' with (x_0, y_0) \in D has a local solution z\colon I \to \mathbb where I is a neighbourhood of x_0 in \mathbb, such that z'(x) = f\left(x,z(x)\right) for all x \in I . The solution need not be unique: one and the same initial value (x_0,y_0) may give r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]