HOME





Klein Configuration
In geometry, the Klein configuration, studied by , is a geometric configuration related to Kummer surfaces that consists of 60 points and 60 planes, with each point lying on 15 planes and each plane passing through 15 points. The configurations uses 15 pairs of lines, 12 . 13 . 14 . 15 . 16 . 23 . 24 . 25 . 26 . 34 . 35 . 36 . 45 . 46 . 56 and their reverses. The 60 points are three concurrent lines forming an odd permutation, shown below. The sixty planes are 3 coplanar lines forming even permutations, obtained by reversing the last two digits in the points. For any point or plane there are 15 members in the other set containing those 3 lines. udson, 1905 Coordinates of points and planes A possible set of coordinates for points (and also for planes!) is the following: References * * * But in the original paper, the P43 coordinates are incorrect. {{Incidence structures Configurations (geometry) Algebraic geometry ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometric Configuration
In mathematics, specifically projective geometry, a configuration in the plane consists of a finite set of points, and a finite arrangement of lines, such that each point is incident to the same number of lines and each line is incident to the same number of points. Although certain specific configurations had been studied earlier (for instance by Thomas Kirkman in 1849), the formal study of configurations was first introduced by Theodor Reye in 1876, in the second edition of his book ''Geometrie der Lage'', in the context of a discussion of Desargues' theorem. Ernst Steinitz wrote his dissertation on the subject in 1894, and they were popularized by Hilbert and Cohn-Vossen's 1932 book ''Anschauliche Geometrie'', reprinted in English as . Configurations may be studied either as concrete sets of points and lines in a specific geometry, such as the Euclidean or projective planes (these are said to be ''realizable'' in that geometry), or as a type of abstract incidence geometry. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kummer Surface
In algebraic geometry, a Kummer quartic surface, first studied by , is an irreducible nodal surface of degree 4 in \mathbb^3 with the maximal possible number of 16 double points. Any such surface is the Kummer variety of the Jacobian variety of a smooth hyperelliptic curve of genus 2; i.e. a quotient of the Jacobian by the Kummer involution ''x'' ↦ −''x''. The Kummer involution has 16 fixed points: the 16 2-torsion point of the Jacobian, and they are the 16 singular points of the quartic surface. Resolving the 16 double points of the quotient of a (possibly nonalgebraic) torus by the Kummer involution gives a K3 surface with 16 disjoint rational curves; these K3 surfaces are also sometimes called Kummer surfaces. Other surfaces closely related to Kummer surfaces include Weddle surfaces, wave surfaces, and tetrahedroids. Geometry Singular quartic surfaces and the double plane model Let K\subset\mathbb^3 be a quartic surface with an ordinary double ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press was the university press of the University of Cambridge. Granted a letters patent by King Henry VIII in 1534, it was the oldest university press in the world. Cambridge University Press merged with Cambridge Assessment to form Cambridge University Press and Assessment under Queen Elizabeth II's approval in August 2021. With a global sales presence, publishing hubs, and offices in more than 40 countries, it published over 50,000 titles by authors from over 100 countries. Its publications include more than 420 academic journals, monographs, reference works, school and university textbooks, and English language teaching and learning publications. It also published Bibles, runs a bookshop in Cambridge, sells through Amazon, and has a conference venues business in Cambridge at the Pitt Building and the Sir Geoffrey Cass Sports and Social Centre. It also served as the King's Printer. Cambridge University Press, as part of the University of Cambridge, was a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematische Annalen
''Mathematische Annalen'' (abbreviated as ''Math. Ann.'' or, formerly, ''Math. Annal.'') is a German mathematical research journal founded in 1868 by Alfred Clebsch and Carl Neumann. Subsequent managing editors were Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück, Nigel Hitchin, and Thomas Schick. Currently, the managing editor of Mathematische Annalen is Yoshikazu Giga (University of Tokyo). Volumes 1–80 (1869–1919) were published by Teubner. Since 1920 (vol. 81), the journal has been published by Springer. In the late 1920s, under the editorship of Hilbert, the journal became embroiled in controversy over the participation of L. E. J. Brouwer on its editorial board, a spillover from the foundational Brouwer–Hilbert controversy. Between 1945 and 1947, the journal briefly ceased publication. References External links''Mathematische Annalen''homepage a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Michigan Mathematical Journal
The ''Michigan Mathematical Journal'' (established 1952) is published by the mathematics department at the University of Michigan. An important early editor for the Journal was George Piranian. Historically, the Journal has been published a small number of times in a given year (currently four), in all areas of mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar .... The current Managing Editor is Mircea Mustaţă. References External links * Mathematics journals University of Michigan 1952 establishments in Michigan Academic journals established in 1952 {{math-journal-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Configurations (geometry)
Configuration or configurations may refer to: Computing * Computer configuration or system configuration * Configuration file, a software file used to configure the initial settings for a computer program * Configurator, also known as choice board, design system, or co-design platform, used in product design to capture customers' specifications * Configure script ("./configure" in Unix), the output of Autotools; used to detect system configuration * CONFIG.SYS, the primary configuration file for DOS and OS/2 operating systems Mathematics * Configuration (geometry), a finite set of points and lines with certain properties * Configuration (polytope), special kind of configuration for regular polytopes * Configuration space (mathematics), a space representing assignments of points to non-overlapping positions on a topological space Physics * Configuration space (physics), in classical mechanics, the vector space formed by the parameters of a system * Electron configuration, the distr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]