HOME





Kernelization
In computer science, a kernelization is a technique for designing efficient algorithms that achieve their efficiency by a preprocessing stage in which inputs to the algorithm are replaced by a smaller input, called a "kernel". The result of solving the problem on the kernel should either be the same as on the original input, or it should be easy to transform the output on the kernel to the desired output for the original problem. Kernelization is often achieved by applying a set of reduction rules that cut away parts of the instance that are easy to handle. In parameterized complexity theory, it is often possible to prove that a kernel with guaranteed bounds on the size of a kernel (as a function of some parameter associated to the problem) can be found in polynomial time. When this is possible, it results in a fixed-parameter tractable algorithm whose running time is the sum of the (polynomial time) kernelization step and the (non-polynomial but bounded by the parameter) time to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Parameterized Approximation Algorithm
A parameterized approximation algorithm is a type of algorithm that aims to find approximate solutions to NP-hard optimization problems in polynomial time in the input size and a function of a specific parameter. These algorithms are designed to combine the best aspects of both traditional approximation algorithms and fixed-parameter tractability. In traditional approximation algorithms, the goal is to find solutions that are at most a certain factor away from the optimal solution, known as an -approximation, in polynomial time. On the other hand, parameterized algorithms are designed to find exact solutions to problems, but with the constraint that the running time of the algorithm is polynomial in the input size and a function of a specific parameter . The parameter describes some property of the input and is small in typical applications. The problem is said to be fixed-parameter tractable (FPT) if there is an algorithm that can find the optimum solution in f(k)n^ time, where ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bidimensionality
Bidimensionality theory characterizes a broad range of graph problems (bidimensional) that admit efficient approximate, fixed-parameter or kernel solutions in a broad range of graphs. These graph classes include planar graphs, map graphs, bounded-genus graphs and graphs excluding any fixed minor. In particular, bidimensionality theory builds on the graph minor theory of Robertson and Seymour by extending the mathematical results and building new algorithmic tools. The theory was introduced in the work of Demaine, Fomin, Hajiaghayi, and Thilikos, for which the authors received the Nerode Prize in 2015. Definition A parameterized problem \Pi is a subset of \Gamma^\times \mathbb for some finite alphabet \Gamma. An instance of a parameterized problem consists of ''(x,k)'', where ''k'' is called the parameter. A parameterized problem \Pi is ''minor-bidimensional'' if # For any pair of graphs H,G, such that H is a minor of G and integer k, (G,k)\in \Pi yields that (H,k)\in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Parameterized Complexity
In computer science, parameterized complexity is a branch of computational complexity theory that focuses on classifying computational problems according to their inherent difficulty with respect to ''multiple'' parameters of the input or output. The complexity of a problem is then measured as a function of those parameters. This allows the classification of NP-hard problems on a finer scale than in the classical setting, where the complexity of a problem is only measured as a function of the number of bits in the input. This appears to have been first demonstrated in . The first systematic work on parameterized complexity was done by . Under the assumption that P ≠ NP, there exist many natural problems that require super-polynomial running time when complexity is measured in terms of the input size only but that are computable in a time that is polynomial in the input size and exponential or worse in a parameter . Hence, if is fixed at a small value and the growth ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fixed-parameter Tractability
In computer science, parameterized complexity is a branch of computational complexity theory that focuses on classifying computational problems according to their inherent difficulty with respect to ''multiple'' parameters of the input or output. The complexity of a problem is then measured as a function of those parameters. This allows the classification of NP-hard problems on a finer scale than in the classical setting, where the complexity of a problem is only measured as a function of the number of bits in the input. This appears to have been first demonstrated in . The first systematic work on parameterized complexity was done by . Under the assumption that P ≠ NP, there exist many natural problems that require super-polynomial running time when complexity is measured in terms of the input size only but that are computable in a time that is polynomial in the input size and exponential or worse in a parameter . Hence, if is fixed at a small value and the growth of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Iterative Compression
In computer science, iterative compression is an algorithmic technique for the design of fixed-parameter tractable algorithms, in which one element (such as a vertex of a graph) is added to the problem in each step, and a small solution for the problem prior to the addition is used to help find a small solution to the problem after the step. The technique was invented by Reed, Smith and Vetta. to show that the problem of odd cycle transversal was solvable in time , for a graph with vertices, edges, and odd cycle transversal number . Odd cycle transversal is the problem of finding the smallest set of vertices of a graph that includes at least one vertex from every odd cycle; its parameterized complexity was a longstanding open question. . This technique later proved very useful in showing fixed-parameter tractability results. It is now considered to be one of the fundamental techniques in the area of parameterized algorithmics. Iterative compression has been used successful ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sunflower Lemma
In the mathematical fields of set theory and extremal combinatorics, a sunflower or \Delta-system is a collection of sets in which all possible distinct pairs of sets share the same intersection. This common intersection is called the kernel of the sunflower. The naming arises from a visual similarity to the botanical sunflower, arising when a Venn diagram of a sunflower set is arranged in an intuitive way. Suppose the shared elements of a sunflower set are clumped together at the centre of the diagram, and the nonshared elements are distributed in a circular pattern around the shared elements. Then when the Venn diagram is completed, the lobe-shaped subsets, which encircle the common elements and one or more unique elements, take on the appearance of the petals of a flower. The main research question arising in relation to sunflowers is: under what conditions does there exist a ''large'' sunflower (a sunflower with many sets) in a given collection of sets? The \Delta-lemma, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Recursive Language
In mathematics, logic and computer science, a recursive (or ''decidable'') language is a recursive subset of the Kleene closure of an alphabet. Equivalently, a formal language is recursive if there exists a Turing machine that decides the formal language. In theoretical computer science, such always-halting Turing machines are called total Turing machines or algorithms. The concept of decidability may be extended to other models of computation. For example, one may speak of languages decidable on a non-deterministic Turing machine. Therefore, whenever an ambiguity is possible, the synonym used for "recursive language" is Turing-decidable language, rather than simply ''decidable''. The class of all recursive languages is often called R, although this name is also used for the class RP. This type of language was not defined in the Chomsky hierarchy. All recursive languages are also recursively enumerable. All regular, context-free and context-sensitive languages are recur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Information Processing Letters
''Information Processing Letters'' is a peer review, peer-reviewed scientific journal in the field of computer science, published by Elsevier. The aim of the journal is to enable fast dissemination of results in the field of Data processing, information processing in the form of short papers. Submissions are limited to nine double-spaced pages. The scope of IPL covers fundamental aspects of information processing and computing. This naturally covers topics in the broadly understood field of theoretical computer science, including algorithms, formal languages and automata, computational complexity, computational logic, distributed and parallel algorithms, computational geometry, learning theory, computational number theory, computational biology, coding theory, theoretical cryptography, and applied discrete mathematics. Generally, submissions in all areas of scientific inquiry are considered, provided that they describe research contributions credibly motivated by applications to com ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




SIAM Journal On Computing
The ''SIAM Journal on Computing'' is a scientific journal focusing on the mathematical and formal aspects of computer science. It is published by the Society for Industrial and Applied Mathematics (SIAM). Although its official ISO abbreviation is ''SIAM J. Comput.'', its publisher and contributors frequently use the shorter abbreviation ''SICOMP''. SICOMP typically hosts the special issues of the IEEE Annual Symposium on Foundations of Computer Science (FOCS) and the Annual ACM Symposium on Theory of Computing (STOC), where about 15% of papers published in FOCS and STOC each year are invited to these special issues. For example, Volume 48 contains 11 out of 85 papers published in FOCS 2016. References External linksSIAM Journal on Computing
on

Journal Of Computer And System Sciences
The ''Journal of Computer and System Sciences'' (JCSS) is a peer-reviewed scientific journal in the field of computer science. ''JCSS'' is published by Elsevier, and it was started in 1967. Many influential scientific articles have been published in ''JCSS''; these include five papers that have won the Gödel Prize The Gödel Prize is an annual prize for outstanding papers in the area of theoretical computer science, given jointly by the European Association for Theoretical Computer Science (EATCS) and the Association for Computing Machinery Special Inter .... Its managing editor is Michael Segal. Notes References * * External links * Journal homepageScienceDirect accessDBLP information Computer science journals Elsevier academic journals {{compu-journal-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Optimization Problem
In mathematics, engineering, computer science and economics Economics () is a behavioral science that studies the Production (economics), production, distribution (economics), distribution, and Consumption (economics), consumption of goods and services. Economics focuses on the behaviour and interac ..., an optimization problem is the problem of finding the ''best'' solution from all feasible solutions. Optimization problems can be divided into two categories, depending on whether the variables are continuous or discrete: * An optimization problem with discrete variables is known as a '' discrete optimization'', in which an object such as an integer, permutation or graph must be found from a countable set. * A problem with continuous variables is known as a '' continuous optimization'', in which an optimal value from a continuous function must be found. They can include constrained problems and multimodal problems. Search space In the context of an optim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]