HOME



picture info

Kepler's Equation
In orbital mechanics, Kepler's equation relates various geometric properties of the orbit of a body subject to a central force. It was derived by Johannes Kepler in 1609 in Chapter 60 of his ''Astronomia nova'', and in book V of his ''Epitome of Copernican Astronomy'' (1621) Kepler proposed an iterative solution to the equation. This equation and its solution, however, first appeared in a 9th-century work by Habash al-Hasib al-Marwazi, which dealt with problems of parallax. The equation has played an important role in the history of both physics and mathematics, particularly classical celestial mechanics. Equation Kepler's equation is where M is the mean anomaly, E is the eccentric anomaly, and e is the Eccentricity (mathematics), eccentricity. The 'eccentric anomaly' E is useful to compute the position of a point moving in a Keplerian orbit. As for instance, if the body passes the periastron at coordinates x = a(1 - e), y = 0, at time t = t_0, then to find out the position ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Orbital Mechanics
Orbital mechanics or astrodynamics is the application of ballistics and celestial mechanics to rockets, satellites, and other spacecraft. The motion of these objects is usually calculated from Newton's laws of motion and the law of universal gravitation. Astrodynamics is a core discipline within space-mission design and control. Celestial mechanics treats more broadly the orbital dynamics of systems under the influence of gravity, including both spacecraft and natural astronomical bodies such as star systems, planets, moons, and comets. Orbital mechanics focuses on spacecraft trajectories, including orbital maneuvers, orbital plane changes, and interplanetary transfers, and is used by mission planners to predict the results of propulsive maneuvers. General relativity is a more exact theory than Newton's laws for calculating orbits, and it is sometimes necessary to use it for greater accuracy or in high-gravity situations (e.g. orbits near the Sun). History Until th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sine
In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle \theta, the sine and cosine functions are denoted as \sin(\theta) and \cos(\theta). The definitions of sine and cosine have been extended to any real value in terms of the lengths of certain line segments in a unit circle. More modern definitions express the sine and cosine as infinite series, or as the solutions of certain differential equations, allowing their extension to arbitrary positive and negative values and even to complex numbers. The sine and cosine functions are commonly used to model periodic phenomena such as sound and light waves, the posit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Analytical Solution
In mathematics, an expression or equation is in closed form if it is formed with constants, variables, and a set of functions considered as ''basic'' and connected by arithmetic operations (, and integer powers) and function composition. Commonly, the basic functions that are allowed in closed forms are ''n''th root, exponential function, logarithm, and trigonometric functions. However, the set of basic functions depends on the context. For example, if one adds polynomial roots to the basic functions, the functions that have a closed form are called elementary functions. The ''closed-form problem'' arises when new ways are introduced for specifying mathematical objects, such as limits, series, and integrals: given an object specified with such tools, a natural problem is to find, if possible, a ''closed-form expression'' of this object; that is, an expression of this object in terms of previous ways of specifying it. Example: roots of polynomials The quadratic for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lagrange Inversion Theorem
In mathematical analysis, the Lagrange inversion theorem, also known as the Lagrange–Bürmann formula, gives the Taylor series expansion of the inverse function of an analytic function. Lagrange inversion is a special case of the inverse function theorem. Statement Suppose is defined as a function of by an equation of the form :z = f(w) where is analytic at a point and f'(a)\neq 0. Then it is possible to ''invert'' or ''solve'' the equation for , expressing it in the form w=g(z) given by a power series : g(z) = a + \sum_^ g_n \frac, where : g_n = \lim_ \frac \left left( \frac \right)^n \right The theorem further states that this series has a non-zero radius of convergence, i.e., g(z) represents an analytic function of in a neighbourhood of z= f(a). This is also called reversion of series. If the assertions about analyticity are omitted, the formula is also valid for formal power series and can be generalized in various ways: It can be formulated for functions of severa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Infinite Series
In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures in combinatorics through generating functions. The mathematical properties of infinite series make them widely applicable in other quantitative disciplines such as physics, computer science, statistics and finance. Among the Ancient Greeks, the idea that a potentially infinite summation could produce a finite result was considered paradoxical, most famously in Zeno's paradoxes. Nonetheless, infinite series were applied practically by Ancient Greek mathematicians including Archimedes, for instance in the quadrature of the parabola. The mathematical side of Zeno's paradoxes was resolved using the concept of a limit during the 17th century, especially through the early calculus of Isaac Newton. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Equation Of The Center
In Two-body problem, two-body, Kepler orbit, Keplerian orbital mechanics, the equation of the center is the angular difference between the actual position of a body in its elliptic orbit, elliptical orbit and the position it would occupy if its motion were uniform, in a circular orbit of the same period. It is defined as the difference true anomaly, , minus mean anomaly, , and is typically expressed a function of mean anomaly, , and orbital eccentricity, . Discussion Since antiquity, the problem of predicting the motions of the heavenly bodies has been simplified by reducing it to one of a single body in orbit about another. In calculating the position of the body around its orbit, it is often convenient to begin by assuming circular motion. This first approximation is then simply a constant angular rate multiplied by an amount of time. However, the actual solution, assuming Newtonian physics, is an elliptical orbit (a Keplerian orbit). For these, it is easy to find the mean anoma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

True Anomaly
In celestial mechanics, true anomaly is an angular parameter that defines the position of a body moving along a Keplerian orbit. It is the angle between the direction of periapsis and the current position of the body, as seen from the main focus of the ellipse (the point around which the object orbits). The true anomaly is usually denoted by the Greek alphabet, Greek letters or , or the Latin script, Latin letter , and is usually restricted to the range 0–360° (0–2π rad). The true anomaly is one of three angular parameters (''anomalies'') that can be used to define a position along an orbit, the other three being the eccentric anomaly and the mean anomaly. Formulas From state vectors For elliptic orbits, the true anomaly can be calculated from orbital state vectors as: : \nu = \arccos ::(if then replace by ) where: * v is the orbital velocity vector of the orbiting body, * e is the eccentricity vector, * r is the orbital position vector (segment ''FP'' in the fi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Closed-form Solution
In mathematics, an expression or equation is in closed form if it is formed with constants, variables, and a set of functions considered as ''basic'' and connected by arithmetic operations (, and integer powers) and function composition. Commonly, the basic functions that are allowed in closed forms are ''n''th root, exponential function, logarithm, and trigonometric functions. However, the set of basic functions depends on the context. For example, if one adds polynomial roots to the basic functions, the functions that have a closed form are called elementary functions. The ''closed-form problem'' arises when new ways are introduced for specifying mathematical objects, such as limits, series, and integrals: given an object specified with such tools, a natural problem is to find, if possible, a ''closed-form expression'' of this object; that is, an expression of this object in terms of previous ways of specifying it. Example: roots of polynomials The quadratic form ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Imaginary Unit
The imaginary unit or unit imaginary number () is a mathematical constant that is a solution to the quadratic equation Although there is no real number with this property, can be used to extend the real numbers to what are called complex numbers, using addition and multiplication. A simple example of the use of in a complex number is Imaginary numbers are an important mathematical concept; they extend the real number system \mathbb to the complex number system \mathbb, in which at least one Root of a function, root for every nonconstant polynomial exists (see Algebraic closure and Fundamental theorem of algebra). Here, the term ''imaginary'' is used because there is no real number having a negative square (algebra), square. There are two complex square roots of and , just as there are two complex square roots of every real number other than zero (which has one multiple root, double square root). In contexts in which use of the letter is ambiguous or problematic, the le ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Closed-form
Closed form may refer to: Mathematics * Closed-form expression, a finitary expression * Closed differential form In mathematics, especially vector calculus and differential topology, a closed form is a differential form ''α'' whose exterior derivative is zero (); and an exact form is a differential form, ''α'', that is the exterior derivative of another di ..., a differential form \alpha whose exterior derivative d\alpha is the zero form 0, meaning d\alpha = 0. Poetry * In poetry analysis, a type of poetry that exhibits regular structure, such as meter or a rhyming pattern * Trobar clus, an allusive and obscure style adopted by some 12th-century troubadours {{disambig Mathematics disambiguation pages ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Parabolic Trajectory
In astrodynamics or celestial mechanics a parabolic trajectory is a Kepler orbit with the Orbital eccentricity, eccentricity equal to 1 and is an unbound orbit that is exactly on the border between elliptical and hyperbolic. When moving away from the source it is called an escape orbit, otherwise a capture orbit. It is also sometimes referred to as a C3 = 0 orbit (see Characteristic energy). Under standard assumptions a body traveling along an escape orbit will coast along a Parabola, parabolic trajectory to infinity, with velocity relative to the central body tending to zero, and therefore will never return. Parabolic trajectories are minimum-energy escape trajectories, separating positive-characteristic energy, energy hyperbolic trajectory, hyperbolic trajectories from negative-energy elliptic orbits. Velocity The Kinetic energy, orbital velocity (v) of a body travelling along a parabolic trajectory can be computed as: :v = \sqrt where: *r is the radial distance of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Series (mathematics)
In mathematics, a series is, roughly speaking, an addition of Infinity, infinitely many Addition#Terms, terms, one after the other. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures in combinatorics through generating functions. The mathematical properties of infinite series make them widely applicable in other quantitative disciplines such as physics, computer science, statistics and finance. Among the Ancient Greece, Ancient Greeks, the idea that a potential infinity, potentially infinite summation could produce a finite result was considered paradoxical, most famously in Zeno's paradoxes. Nonetheless, infinite series were applied practically by Ancient Greek mathematicians including Archimedes, for instance in the Quadrature of the Parabola, quadrature of the parabola. The mathematical side of Zeno's paradoxes was resolved using the concept of a limit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]