KPZ Fixed Point
   HOME





KPZ Fixed Point
In probability theory, the KPZ fixed point is a Markov field and conjectured to be a universal limit of a wide range of stochastic models forming the universality class of a non-linear stochastic partial differential equation called the KPZ equation. Even though the universality class was already introduced in 1986 with the KPZ equation itself, the KPZ fixed point was not concretely specified until 2021 when mathematicians Konstantin Matetski, Jeremy Quastel and Daniel Remenik gave an explicit description of the transition probabilities in terms of Fredholm determinants. Introduction All models in the KPZ class have in common, that they have a fluctuating ''height function'' or some analogue function, that can be thought of as a function, that models the growth of the model by time. The KPZ equation itself is also a member of this class and the canonical model of modelling random interface growth. The ''strong KPZ universality conjecture'' conjectures that all models in the KP ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probability Theory
Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms of probability, axioms. Typically these axioms formalise probability in terms of a probability space, which assigns a measure (mathematics), measure taking values between 0 and 1, termed the probability measure, to a set of outcomes called the sample space. Any specified subset of the sample space is called an event (probability theory), event. Central subjects in probability theory include discrete and continuous random variables, probability distributions, and stochastic processes (which provide mathematical abstractions of determinism, non-deterministic or uncertain processes or measured Quantity, quantities that may either be single occurrences or evolve over time in a random fashion). Although it is no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Asymmetric Simple Exclusion Process
In probability theory, the asymmetric simple exclusion process (ASEP) is an interacting particle system introduced in 1970 by Frank Spitzer. Many articles have been published on it in the physics and mathematics literature since then, and it has become a "default stochastic model for transport phenomena". The process with parameters p, q \geqslant 0,\, p + q = 1 is a continuous-time Markov process In probability theory and statistics, a Markov chain or Markov process is a stochastic process describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event. Informally, ... on S = \lbrace 0, 1\rbrace^, the 1s being thought of as particles and the 0s as empty sites. Each particle waits a random amount of time having the distribution of an exponential random variable with mean one and then attempts a jump, one site to the right with probability p and one site to the left with probability q. However, the jump i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stochastic Processes
In probability theory and related fields, a stochastic () or random process is a mathematical object usually defined as a family of random variables in a probability space, where the index of the family often has the interpretation of time. Stochastic processes are widely used as mathematical models of systems and phenomena that appear to vary in a random manner. Examples include the growth of a bacterial population, an electrical current fluctuating due to thermal noise, or the movement of a gas molecule. Stochastic processes have applications in many disciplines such as biology, chemistry, ecology, neuroscience, physics, image processing, signal processing, control theory, information theory, computer science, and telecommunications. Furthermore, seemingly random changes in financial markets have motivated the extensive use of stochastic processes in finance. Applications and the study of phenomena have in turn inspired the proposal of new stochastic processes. Examples of su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Random Matrices
In probability theory and mathematical physics, a random matrix is a matrix-valued random variable—that is, a matrix in which some or all of its entries are sampled randomly from a probability distribution. Random matrix theory (RMT) is the study of properties of random matrices, often as they become large. RMT provides techniques like mean-field theory, diagrammatic methods, the cavity method, or the replica method to compute quantities like traces, spectral densities, or scalar products between eigenvectors. Many physical phenomena, such as the spectrum of nuclei of heavy atoms, the thermal conductivity of a lattice, or the emergence of quantum chaos, can be modeled mathematically as problems concerning large, random matrices. Applications Physics In nuclear physics, random matrices were introduced by Eugene Wigner to model the nuclei of heavy atoms. Wigner postulated that the spacings between the lines in the spectrum of a heavy atom nucleus should resemble the sp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Airy Process
The Airy processes are a family of Stationary process, stationary stochastic processes that appear as limit processes in the theory of random growth models and random matrix theory. They are conjectured to be Universality class, universal limits describing the long time, large scale spatial fluctuations of the models in the Kardar–Parisi–Zhang equation#KPZ universality class, (1+1)-dimensional KPZ universality class (Kardar–Parisi–Zhang equation) for many initial conditions (see also KPZ fixed point). The original process Airy2 was introduced in 2002 by the mathematicians Michael Prähofer and Herbert Spohn. They proved that the height function of a model from the (1+1)-dimensional KPZ universality class - the PNG droplet - converges under suitable scaling and initial condition to the Airy2 process and that it is a stationary process with almost surely continuous sample paths. The Airy process is named after the Airy function. The process can be defined through its finite-di ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Heteroclinic Orbit
In mathematics, in the phase portrait of a dynamical system, a heteroclinic orbit (sometimes called a '' heteroclinic connection'') is a path in phase space which joins two different equilibrium points. If the equilibrium points at the start and end of the orbit are the same, the orbit is a homoclinic orbit. Consider the continuous dynamical system described by the ordinary differential equation \dot x = f(x). Suppose there are equilibria at x=x_0,x_1. Then a solution \phi(t) is a heteroclinic orbit from x_0 to x_1 if both limits are satisfied: \begin \phi(t) \rightarrow x_0 &\text& t \rightarrow -\infty, \\ pt\phi(t) \rightarrow x_1 &\text& t \rightarrow +\infty. \end This implies that the orbit is contained in the stable manifold of x_1 and the unstable manifold of x_0. Symbolic dynamics By using the Markov partition, the long-time behaviour of hyperbolic system can be studied using the techniques of symbolic dynamics. In this case, a heteroclinic orbit has a particularly ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ivan Corwin
Ivan Zachary Corwin (born May 24, 1984) is an American mathematician who is a professor of mathematics at Columbia University. His research concerns probability, mathematical physics, quantum integrable systems, stochastic PDEs, and random matrix theory. He is particularly known for work related to the Kardar–Parisi–Zhang equation. Education and career Corwin was born in Poughkeepsie, New York. He graduated from Harvard University in 2006 receiving an A.B. in mathematics, and subsequently received his Ph.D. from the Courant Institute at New York University under direction of Gerard Ben Arous. He held the first Schramm Memorial Postdoctoral Fellowship at Microsoft Research, New England and MIT from 2012–2014, was a Clay Research Fellow from 2012–2016, and held the first Poincare Chair in 2014 at the Institute Henri Poincare. In 2021, he held a Miller visiting professorship at the Miller Institute as well as a Simons Fellowship. Corwin has taught at Columbia University s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Trace Class
In mathematics, specifically functional analysis, a trace-class operator is a linear operator for which a trace may be defined, such that the trace is a finite number independent of the choice of basis used to compute the trace. This trace of trace-class operators generalizes the trace of matrices studied in linear algebra. All trace-class operators are compact operators. In quantum mechanics, quantum states are described by density matrices, which are certain trace class operators. Trace-class operators are essentially the same as nuclear operators, though many authors reserve the term "trace-class operator" for the special case of nuclear operators on Hilbert spaces and use the term "nuclear operator" in more general topological vector spaces (such as Banach spaces). Definition Let H be a separable Hilbert space, \left\_^ an orthonormal basis and A : H \to H a positive bounded linear operator on H. The trace of A is denoted by \operatorname (A) and defined as :\operato ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Weyl Chamber
In mathematics, in particular the theory of Lie algebras, the Weyl group (named after Hermann Weyl) of a root system Φ is a subgroup of the isometry group of that root system. Specifically, it is the subgroup which is generated by reflections through the hyperplanes orthogonal to at least one of the roots, and as such is a finite reflection group. In fact it turns out that ''most'' finite reflection groups are Weyl groups. Abstractly, Weyl groups are finite Coxeter groups, and are important examples of these. The Weyl group of a semisimple Lie group, a semisimple Lie algebra, a semisimple linear algebraic group, etc. is the Weyl group of the root system of that group or algebra. Definition and examples Let \Phi be a root system in a Euclidean space V. For each root \alpha\in\Phi, let s_\alpha denote the reflection about the hyperplane perpendicular to \alpha, which is given explicitly as :s_\alpha(v)=v-2\frac\alpha, where (\cdot,\cdot) is the inner product on V. The Weyl grou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Topology
Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such as Stretch factor, stretching, Torsion (mechanics), twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a Set (mathematics), set endowed with a structure, called a ''Topology (structure), topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of List of continuity-related mathematical topics, continuity. Euclidean spaces, and, more generally, metric spaces are examples of topological spaces, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and Homotopy, homotopies. A property that is invariant under such deformations is a to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Markov Field
In the domain of physics and probability, a Markov random field (MRF), Markov network or undirected graphical model is a set of random variables having a Markov property described by an undirected graph. In other words, a random field is said to be a Markov random field if it satisfies Markov properties. The concept originates from the Sherrington–Kirkpatrick model. A Markov network or MRF is similar to a Bayesian network in its representation of dependencies; the differences being that Bayesian networks are directed and acyclic, whereas Markov networks are undirected and may be cyclic. Thus, a Markov network can represent certain dependencies that a Bayesian network cannot (such as cyclic dependencies ); on the other hand, it can't represent certain dependencies that a Bayesian network can (such as induced dependencies ). The underlying graph of a Markov random field may be finite or infinite. When the joint probability density of the random variables is strictly positive, i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Polish Space
In the mathematical discipline of general topology, a Polish space is a separable space, separable Completely metrizable space, completely metrizable topological space; that is, a space homeomorphic to a Complete space, complete metric space that has a countable Dense set, dense subset. Polish spaces are so named because they were first extensively studied by Polish topologists and logicians—Sierpiński, Kuratowski, Alfred Tarski, Tarski and others. However, Polish spaces are mostly studied today because they are the primary setting for descriptive set theory, including the study of Borel equivalence relations. Polish spaces are also a convenient setting for more advanced measure theory, in particular in probability theory. Common examples of Polish spaces are the real line, any Separable space, separable Banach space, the Cantor space, and the Baire space (set theory), Baire space. Additionally, some spaces that are not complete metric spaces in the usual metric may be Polish; ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]