K-vertex-connected Graph
In graph theory, a connected Graph (discrete mathematics), graph is said to be -vertex-connected (or -connected) if it has more than Vertex (graph theory), vertices and remains Connectivity (graph theory), connected whenever fewer than vertices are removed. The vertex-connectivity, or just connectivity, of a graph is the largest for which the graph is -vertex-connected. Definitions A graph (other than a complete graph) has connectivity ''k'' if ''k'' is the size of the smallest subset of vertices such that the graph becomes disconnected if you delete them. In complete graphs, there is no subset whose removal would disconnect the graph. Some sources modify the definition of connectivity to handle this case, by defining it as the size of the smallest subset of vertices whose deletion results in either a disconnected graph or a single vertex. For this variation, the connectivity of a complete graph K_n is n-1. An equivalent definition is that a graph with at least two vertic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
4-connected Graph
In mathematics and computer science, connectivity is one of the basic concepts of graph theory: it asks for the minimum number of elements (nodes or edges) that need to be removed to separate the remaining nodes into two or more isolated subgraphs. It is closely related to the theory of network flow problems. The connectivity of a graph is an important measure of its resilience as a network. Connected vertices and graphs In an undirected graph , two vertices and are called connected if contains a path from to . Otherwise, they are called disconnected. If the two vertices are additionally connected by a path of length (that is, they are the endpoints of a single edge), the vertices are called adjacent. A graph is said to be connected if every pair of vertices in the graph is connected. This means that there is a path between every pair of vertices. An undirected graph that is not connected is called disconnected. An undirected graph is therefore disconnected if there e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pacific Journal Of Mathematics
The Pacific Journal of Mathematics is a mathematics research journal supported by several universities and research institutes, and currently published on their behalf by Mathematical Sciences Publishers, a non-profit academic publishing organisation, and the University of California, Berkeley. It was founded in 1951 by František Wolf and Edwin F. Beckenbach and has been published continuously since, with five two-issue volumes per year and 12 issues per year. Full-text PDF versions of all journal articles are available on-line via the journal's website with a subscription. The journal is incorporated as a 501(c)(3) organization A 501(c)(3) organization is a United States corporation, Trust (business), trust, unincorporated association or other type of organization exempt from federal income tax under section 501(c)(3) of Title 26 of the United States Code. It is one of .... The 255-page proof of the odd order theorem, by Walter Feit and John Griggs Thompson, was publi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vertex Separator
In graph theory, a vertex subset is a vertex separator (or vertex cut, separating set) for nonadjacent Vertex (graph theory), vertices and if the Graph partition, removal of from the Graph (discrete mathematics), graph separates and into distinct connected component (graph theory), connected components. Examples Consider a grid graph with rows and columns; the total number of vertices is . For instance, in the illustration, , , and . If is odd, there is a single central row, and otherwise there are two rows equally close to the center; similarly, if is odd, there is a single central column, and otherwise there are two columns equally close to the center. Choosing to be any of these central rows or columns, and removing from the graph, partitions the graph into two smaller connected subgraphs and , each of which has at most vertices. If (as in the illustration), then choosing a central column will give a separator with r \leq \sqrt vertices, and similarly if the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tutte Embedding
In graph drawing and geometric graph theory, a Tutte embedding or barycentric embedding of a simple, 3-vertex-connected, planar graph is a crossing-free straight-line embedding with the properties that the outer face is a convex polygon and that each interior vertex is at the average (or barycenter) of its neighbors' positions. If the outer polygon is fixed, this condition on the interior vertices determines their position uniquely as the solution to a system of linear equations. Solving the equations geometrically produces a planar embedding. Tutte's spring theorem, proven by , states that this unique solution is always crossing-free, and more strongly that every face of the resulting planar embedding is convex. It is called the spring theorem because such an embedding can be found as the equilibrium position for a system of springs representing the edges of the graph. Example Let ''G'' be the graph of a cube, and (selecting one of its quadrilateral faces as the outer face) ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Structural Cohesion
In sociology, structural cohesion is the conception of a useful formal definition and measure of cohesion in social groups. It is defined as the minimal number of actors in a social network that need to be removed to disconnect the group. It is thus identical to the question of the node connectivity of a given graph in discrete mathematics. The vertex-cut version of Menger's theorem also proves that the disconnection number is equivalent to a maximally sized group with a network in which every pair of persons has at least this number of separate paths between them. It is also useful to know that -cohesive graphs (or -components) are always a subgraph of a -core, although a -core is not always -cohesive. A -core is simply a subgraph in which all nodes have at least neighbors but it need not even be connected. The boundaries of structural endogamy in a kinship group are a special case of structural cohesion. Software Cohesive.blockingis the R program for computing structur ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
K-edge-connected Graph
In graph theory, a connected graph is -edge-connected if it remains connected whenever fewer than edges are removed. The edge-connectivity of a graph is the largest for which the graph is -edge-connected. Edge connectivity and the enumeration of -edge-connected graphs was studied by Camille Jordan in 1869. Formal definition Let G = (V, E) be an arbitrary graph. If the subgraph G' = (V, E \setminus X) is connected for all X \subseteq E where , X, < k, then ''G'' is said to be ''k''-edge-connected. The edge connectivity of is the maximum value ''k'' such that ''G'' is ''k''-edge-connected. The smallest set ''X'' whose removal disconnects ''G'' is a minimum cut in ''G''. The edge connectivity version of Menger's theorem provides an alternative and equivalent character ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Induced Path
In the mathematical area of graph theory, an induced path in an undirected graph is a path that is an induced subgraph of . That is, it is a sequence of vertices in such that each two adjacent vertices in the sequence are connected by an edge in , and each two nonadjacent vertices in the sequence are not connected by any edge in . An induced path is sometimes called a snake, and the problem of finding long induced paths in hypercube graphs is known as the snake-in-the-box problem. Similarly, an induced cycle is a cycle that is an induced subgraph of ; induced cycles are also called chordless cycles or (when the length of the cycle is four or more) holes. An antihole is a hole in the complement of , i.e., an antihole is a complement of a hole. The length of the longest induced path in a graph has sometimes been called the detour number of the graph; for sparse graphs, having bounded detour number is equivalent to having bounded tree-depth. The induced path number of a gra ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cycle Space
In graph theory, a branch of mathematics, the (binary) cycle space of an undirected graph is the set of its even-degree subgraphs. This set of subgraphs can be described algebraically as a vector space over the two-element finite field. The dimension of this space is the circuit rank of the graph. The same space can also be described in terms from algebraic topology as the first homology group of the graph. Using homology theory, the binary cycle space may be generalized to cycle spaces over arbitrary rings. Definitions The cycle space of a graph can be described with increasing levels of mathematical sophistication as a set of subgraphs, as a binary vector space, or as a homology group. Graph theory A spanning subgraph of a given graph ''G'' may be defined from any subset ''S'' of the edges of ''G''. The subgraph has the same set of vertices as ''G'' itself (this is the meaning of the word "spanning") but has the elements of ''S'' as its edges. Thus, a graph ''G'' with ''m'' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cycle (graph Theory)
In graph theory, a cycle in a graph is a non-empty trail in which only the first and last vertices are equal. A directed cycle in a directed graph is a non-empty directed trail in which only the first and last vertices are equal. A graph without cycles is called an ''acyclic graph''. A directed graph without directed cycles is called a '' directed acyclic graph''. A connected graph without cycles is called a ''tree''. Definitions Circuit and cycle * A circuit is a non-empty trail in which the first and last vertices are equal (''closed trail''). : Let be a graph. A circuit is a non-empty trail with a vertex sequence . * A cycle or simple circuit is a circuit in which only the first and last vertices are equal. * ''n'' is called the length of the circuit resp. length of the cycle. Directed circuit and directed cycle * A directed circuit is a non-empty directed trail in which the first and last vertices are equal (''closed directed trail''). : Let be a directed grap ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Integral Flow Theorem
In optimization theory, maximum flow problems involve finding a feasible flow through a flow network that obtains the maximum possible flow rate. The maximum flow problem can be seen as a special case of more complex network flow problems, such as the circulation problem. The maximum value of an s-t flow (i.e., flow from source s to sink t) is equal to the minimum capacity of an s-t cut (i.e., cut severing s from t) in the network, as stated in the max-flow min-cut theorem. History The maximum flow problem was first formulated in 1954 by T. E. Harris and F. S. Ross as a simplified model of Soviet railway traffic flow. In 1955, Lester R. Ford, Jr. and Delbert R. Fulkerson created the first known algorithm, the Ford–Fulkerson algorithm.Ford, L.R., Jr.; Fulkerson, D.R., ''Flows in Networks'', Princeton University Press (1962). In their 1955 paper, Ford and Fulkerson wrote that the problem of Harris and Ross is formulated as follows (see p. 5):Consider a rail network con ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Polyhedron
In geometry, a polyhedron (: polyhedra or polyhedrons; ) is a three-dimensional figure with flat polygonal Face (geometry), faces, straight Edge (geometry), edges and sharp corners or Vertex (geometry), vertices. The term "polyhedron" may refer either to a solid figure or to its boundary surface (mathematics), surface. The terms solid polyhedron and polyhedral surface are commonly used to distinguish the two concepts. Also, the term ''polyhedron'' is often used to refer implicitly to the whole structure (mathematics), structure formed by a solid polyhedron, its polyhedral surface, its faces, its edges, and its vertices. There are many definitions of polyhedron. Nevertheless, the polyhedron is typically understood as a generalization of a two-dimensional polygon and a three-dimensional specialization of a polytope, a more general concept in any number of dimensions. Polyhedra have several general characteristics that include the number of faces, topological classification by Eule ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |