Join (simplicial Sets)
   HOME



picture info

Join (simplicial Sets)
In higher category theory in mathematics, the join of simplicial sets is an operation making the category of simplicial sets into a monoidal category. In particular, it takes two simplicial sets to construct another simplicial set. It is closely related to the diamond operation and used in the construction of the twisted diagonal. Under the nerve construction, it corresponds to the join of categories and under the geometric realization, it corresponds to the join of topological spaces. Definition For natural numbers m,p,q\in\mathbb, one has the identity:Cisinski 2019, 3.4.12. : \operatorname( +q+1 =\prod_\operatorname( \times\operatorname( , which can be extended by colimits to a functor a functor -*-\colon \mathbf\times\mathbf\rightarrow \mathbf, which together with the empty simplicial set as unit element makes the category of simplicial sets \mathbf into a monoidal category. For simplicial set X and Y, their ''join'' X*Y is the simplicial set: : (X*Y)_n =\prod_X_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Higher Category Theory
In mathematics, higher category theory is the part of category theory at a ''higher order'', which means that some equalities are replaced by explicit morphism, arrows in order to be able to explicitly study the structure behind those equalities. Higher category theory is often applied in algebraic topology (especially in homotopy theory), where one studies algebraic Invariant (mathematics), invariants of topological space, spaces, such as the Fundamental groupoid, fundamental . In higher category theory, the concept of higher categorical structures, such as (), allows for a more robust treatment of homotopy theory, enabling one to capture finer homotopical distinctions, such as differentiating two topological spaces that have the same fundamental group but differ in their higher homotopy groups. This approach is particularly valuable when dealing with spaces with intricate topological features, such as the Eilenberg-MacLane space. Strict higher categories An ordinary category (m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Right Adjoint
In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are known as adjoint functors, one being the left adjoint and the other the right adjoint. Pairs of adjoint functors are ubiquitous in mathematics and often arise from constructions of "optimal solutions" to certain problems (i.e., constructions of objects having a certain universal property), such as the construction of a free group on a set in algebra, or the construction of the Stone–Čech compactification of a topological space in topology. By definition, an adjunction between categories \mathcal and \mathcal is a pair of functors (assumed to be covariant) :F: \mathcal \rightarrow \mathcal and G: \mathcal \rightarrow \mathcal and, for all objects c in \mathcal and d in \mathcal, a bijection between the respective morphism sets :\ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


NLab
The ''n''Lab is a wiki for research-level notes, expositions and collaborative work, including original research, in mathematics, physics, and philosophy, with a focus on methods from type theory, category theory, and homotopy theory. The ''n''Lab espouses the "''n''-point of view" (a deliberate pun on Wikipedia's "neutral point of view") that type theory, homotopy theory, category theory, and higher category theory provide a useful unifying viewpoint for mathematics, physics and philosophy. The ''n'' in ''n''-point of view could refer to either ''n''-categories as found in higher category theory, ''n''-groupoids as found in both homotopy theory and higher category theory, or ''n''-types as found in homotopy type theory. Overview The ''n''Lab was originally conceived to provide a repository for ideas (and even new research) generated in the comments on posts at the ''n''-Category Café, a group blog run (at the time) by John C. Baez, David Corfield and Urs Schreiber. Eventua ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press was the university press of the University of Cambridge. Granted a letters patent by King Henry VIII in 1534, it was the oldest university press in the world. Cambridge University Press merged with Cambridge Assessment to form Cambridge University Press and Assessment under Queen Elizabeth II's approval in August 2021. With a global sales presence, publishing hubs, and offices in more than 40 countries, it published over 50,000 titles by authors from over 100 countries. Its publications include more than 420 academic journals, monographs, reference works, school and university textbooks, and English language teaching and learning publications. It also published Bibles, runs a bookshop in Cambridge, sells through Amazon, and has a conference venues business in Cambridge at the Pitt Building and the Sir Geoffrey Cass Sports and Social Centre. It also served as the King's Printer. Cambridge University Press, as part of the University of Cambridge, was a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Princeton University Press
Princeton University Press is an independent publisher with close connections to Princeton University. Its mission is to disseminate scholarship within academia and society at large. The press was founded by Whitney Darrow, with the financial support of Charles Scribner, as a printing press to serve the Princeton community in 1905. Its distinctive building was constructed in 1911 on William Street in Princeton. Its first book was a new 1912 edition of John Witherspoon's ''Lectures on Moral Philosophy.'' History Princeton University Press was founded in 1905 by a recent Princeton graduate, Whitney Darrow, with financial support from another Princetonian, Charles Scribner II. Darrow and Scribner purchased the equipment and assumed the operations of two already existing local publishers, that of the ''Princeton Alumni Weekly'' and the Princeton Press. The new press printed both local newspapers, university documents, '' The Daily Princetonian'', and later added book publishing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Opposite Simplicial Set
In higher category theory in mathematics, the opposite simplicial set (or dual simplicial set) is an operation extending the opposite category (or dual category). It generalizes the concept of inverting arrows from 1-categories to ∞-categories. Similar to the opposite category defining an involution on the category of small categories, the opposite simplicial sets defines an involution on the category of simplicial sets. Both correspond to each other under the nerve construction. Definition On the simplex category \Delta, there is an automorphism \rho\colon \Delta\rightarrow\Delta, which for a map f\colon rightarrow /math> is given by \rho(f)(i):=n-f(m-i). It fulfills \rho^2=\operatorname and is the only automorphism on the simplex category \Delta. By precomposition, it defines a functor \rho^*\colon \mathbf\rightarrow\mathbf on the category of simplicial sets \mathbf =\mathbf(\Delta,\mathbf). For a simplicial set X, the simplicial set X^\mathrm =\rho^*(X)is its ''opposite simp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Joyal Model Structure
In higher category theory in mathematics, the Joyal model structure is a special model structure on the category of simplicial sets. It consists of three classes of morphisms between simplicial sets called ''fibrations'', ''cofibrations'' and ''weak equivalences'', which fulfill the properties of a model structure. Its fibrant objects are all ∞-categories and it furthermore models the homotopy theory of CW complexes up to homotopy equivalence, with the correspondence between simplicial sets and CW complexes being given by the geometric realization and the singular functor. The Joyal model structure is named after André Joyal. Definition The Joyal model structure is given by: * Fibrations are isofibrations.Cisinski 2019, Theorem 3.6.1. * Cofibrations are monomorphisms.Lurie 2009, ''Higher Topos Theory'', Theorem 1.3.4.1. * Weak equivalences are ''weak categorical equivalences'',Joyal 2008, Theorem 6.12. hence morphisms between simplicial sets, whose geometric realization is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Yoneda Lemma
In mathematics, the Yoneda lemma is a fundamental result in category theory. It is an abstract result on functors of the type ''morphisms into a fixed object''. It is a vast generalisation of Cayley's theorem from group theory (viewing a group as a miniature category with just one object and only isomorphisms). It also generalizes the information-preserving relation between a term and its continuation-passing style transformation from programming language theory. It allows the embedding of any locally small category into a category of functors ( contravariant set-valued functors) defined on that category. It also clarifies how the embedded category, of representable functors and their natural transformations, relates to the other objects in the larger functor category. It is an important tool that underlies several modern developments in algebraic geometry and representation theory. It is named after Nobuo Yoneda. Generalities The Yoneda lemma suggests that instead of studyi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simplex Category
In mathematics, the simplex category (or simplicial category or nonempty finite ordinal category) is the category of non-empty finite ordinals and order-preserving maps. It is used to define simplicial and cosimplicial objects. Formal definition The simplex category is usually denoted by \Delta. There are several equivalent descriptions of this category. \Delta can be described as the category of ''non-empty finite ordinals'' as objects, thought of as totally ordered sets, and ''(non-strictly) order-preserving functions'' as morphisms. The objects are commonly denoted = \ (so that is the ordinal n+1 ). The category is generated by coface and codegeneracy maps, which amount to inserting or deleting elements of the orderings. (See simplicial set for relations of these maps.) A simplicial object is a presheaf on \Delta, that is a contravariant functor from \Delta to another category. For instance, simplicial sets are contravariant with the codomain category being the catego ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Terminal Object
In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism . The dual notion is that of a terminal object (also called terminal element): is terminal if for every object in there exists exactly one morphism . Initial objects are also called coterminal or universal, and terminal objects are also called final. If an object is both initial and terminal, it is called a zero object or null object. A pointed category is one with a zero object. A strict initial object is one for which every morphism into is an isomorphism. Examples * The empty set is the unique initial object in Set, the category of sets. Every one-element set ( singleton) is a terminal object in this category; there are no zero objects. Similarly, the empty space is the unique initial object in Top, the category of topological spaces and every one-point space is a terminal object in this category. * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]