HOME





Janko Group J4
In the area of modern algebra known as group theory, the Janko group ''J4'' is a sporadic simple group of order :   86,775,571,046,077,562,880 : = 22133571132329313743 : ≈ 9. History ''J4'' is one of the 26 Sporadic groups. Zvonimir Janko found J4 in 1975 by studying groups with an involution centralizer of the form 21 + 12.3.(M22:2). Its existence and uniqueness was shown using computer calculations by Simon P. Norton and others in 1980. It has a modular representation of dimension 112 over the finite field with 2 elements and is the stabilizer of a certain 4995 dimensional subspace of the exterior square, a fact which Norton used to construct it, and which is the easiest way to deal with it computationally. and gave computer-free proofs of uniqueness. and gave a computer-free proof of existence by constructing it as an amalgams of groups 210:SL5(2) and (210:24:A8):2 over a group 210:24:A8. The Schur multiplier and the outer automorphism group a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field (mathematics), fields, and vector spaces, can all be seen as groups endowed with additional operation (mathematics), operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right. Various physical systems, such as crystals and the hydrogen atom, and Standard Model, three of the four known fundamental forces in the universe, may be modelled by symmetry groups. Thus group theory and the closely related representation theory have many important applications in physics, chemistry, and materials science. Group theory is also cen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Subquotient
In the mathematical fields of category theory and abstract algebra, a subquotient is a quotient object of a subobject. Subquotients are particularly important in abelian categories, and in group theory, where they are also known as sections, though this conflicts with a different meaning in category theory. So in the algebraic structure of groups, H is a subquotient of G if there exists a subgroup G' of G and a normal subgroup G'' of G' so that H is isomorphic to G'/G''. In the literature about sporadic groups wordings like "H is involved in G" can be found with the apparent meaning of "H is a subquotient of G". As in the context of subgroups, in the context of subquotients the term ''trivial'' may be used for the two subquotients G and \ which are present in every group G. A quotient of a subrepresentation of a representation (of, say, a group) might be called a subquotient representation; e. g., Harish-Chandra's subquotient theorem. p. 310 Example There are subquot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inventiones Mathematicae
''Inventiones Mathematicae'' is a mathematical journal published monthly by Springer Science+Business Media. It was established in 1966 and is regarded as one of the most prestigious mathematics journals in the world. The current (2023) managing editors are Jean-Benoît Bost (University of Paris-Sud) and Wilhelm Schlag (Yale University Yale University is a Private university, private Ivy League research university in New Haven, Connecticut, United States. Founded in 1701, Yale is the List of Colonial Colleges, third-oldest institution of higher education in the United Stat ...). Abstracting and indexing The journal is abstracted and indexed in: References External links *{{Official website, https://www.springer.com/journal/222 Mathematics journals Academic journals established in 1966 English-language journals Springer Science+Business Media academic journals Monthly journals ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Heisenberg Group
In mathematics, the Heisenberg group H, named after Werner Heisenberg, is the group of 3×3 upper triangular matrices of the form : \begin 1 & a & c\\ 0 & 1 & b\\ 0 & 0 & 1\\ \end under the operation of matrix multiplication. Elements ''a, b'' and ''c'' can be taken from any commutative ring with identity, often taken to be the ring of real numbers (resulting in the "continuous Heisenberg group") or the ring of integers (resulting in the "discrete Heisenberg group"). The continuous Heisenberg group arises in the description of one-dimensional quantum mechanical systems, especially in the context of the Stone–von Neumann theorem. More generally, one can consider Heisenberg groups associated to ''n''-dimensional systems, and most generally, to any symplectic vector space. Three-dimensional case In the three-dimensional case, the product of two Heisenberg matrices is given by : \begin 1 & a & c\\ 0 & 1 & b\\ 0 & 0 & 1\\ \end \begin 1 & a' & c'\\ 0 & 1 & b'\\ 0 & 0 & ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binary Golay Code
In mathematics and electronics engineering, a binary Golay code is a type of linear error-correcting code used in digital communications. The binary Golay code, along with the ternary Golay code, has a particularly deep and interesting connection to the theory of finite sporadic groups in mathematics. These codes are named in honor of Marcel J. E. Golay whose 1949 paper introducing them has been called, by E. R. Berlekamp, the "best single published page" in coding theory. There are two closely related binary Golay codes. The extended binary Golay code, ''G''24 (sometimes just called the "Golay code" in finite group theory) encodes 12 bits of data in a 24-bit word in such a way that any 3-bit errors can be corrected or any 4-bit errors can be detected. The other, the perfect binary Golay code, ''G''23, has codewords of length 23 and is obtained from the extended binary Golay code by deleting one coordinate position (conversely, the extended binary Golay code is obtained from th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathieu Group M24
In the area of modern algebra known as group theory, the Mathieu group ''M24'' is a sporadic simple group of order :   244,823,040 = 21033571123 : ≈ 2. History and properties ''M24'' is one of the 26 sporadic groups and was introduced by . It is a 5-transitive permutation group on 24 objects. The Schur multiplier and the outer automorphism group are both trivial. The Mathieu groups can be constructed in various ways. Initially, Mathieu and others constructed them as permutation groups. It was difficult to see that M24 actually existed, that its generators did not just generate the alternating group A24. The matter was clarified when Ernst Witt constructed M24 as the automorphism (symmetry) group of an S(5,8,24) Steiner system W24 (the Witt design). M24 is the group of permutations that map every block in this design to some other block. The subgroups M23 and M22 then are easily defined to be the stabilizers of a single point and a pair of points res ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Presentation Of A Group
In mathematics, a presentation is one method of specifying a group. A presentation of a group ''G'' comprises a set ''S'' of generators—so that every element of the group can be written as a product of powers of some of these generators—and a set ''R'' of relations among those generators. We then say ''G'' has presentation :\langle S \mid R\rangle. Informally, ''G'' has the above presentation if it is the "freest group" generated by ''S'' subject only to the relations ''R''. Formally, the group ''G'' is said to have the above presentation if it is isomorphic to the quotient of a free group on ''S'' by the normal subgroup generated by the relations ''R''. As a simple example, the cyclic group of order ''n'' has the presentation :\langle a \mid a^n = 1\rangle, where 1 is the group identity. This may be written equivalently as :\langle a \mid a^n\rangle, thanks to the convention that terms that do not include an equals sign are taken to be equal to the group identity ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Irreducible Representation
In mathematics, specifically in the representation theory of groups and algebras, an irreducible representation (\rho, V) or irrep of an algebraic structure A is a nonzero representation that has no proper nontrivial subrepresentation (\rho, _W,W), with W \subset V closed under the action of \. Every finite-dimensional unitary representation on a Hilbert space V is the direct sum of irreducible representations. Irreducible representations are always indecomposable (i.e. cannot be decomposed further into a direct sum of representations), but the converse may not hold, e.g. the two-dimensional representation of the real numbers acting by upper triangular unipotent matrices is indecomposable but reducible. History Group representation theory was generalized by Richard Brauer from the 1940s to give modular representation theory, in which the matrix operators act on a vector space over a field K of arbitrary characteristic, rather than a vector space over the field of real number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pariah Group
In group theory, the term pariah was introduced by Robert Griess in to refer to the six sporadic simple groups which are not subquotients of the monster group In the area of abstract algebra known as group theory, the monster group M (also known as the Fischer–Griess monster, or the friendly giant) is the largest sporadic simple group; it has order :    : = 2463205976112133171923293 .... The twenty groups which are subquotients, including the monster group itself, he dubbed the happy family. For example, the orders of ''J''4 and the Lyons Group ''Ly'' are divisible by 37. Since 37 does not divide the order of the monster, these cannot be subquotients of it; thus ''J''4 and ''Ly'' are pariahs. Three other sporadic groups were also shown to be pariahs by Griess in 1982, and the Janko Group J1 was shown to be the final pariah by Robert A. Wilson in 1986. The complete list is shown below. References * * Robert A. Wilson (1986)''Is J1 a subgroup of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Monster Group
In the area of abstract algebra known as group theory, the monster group M (also known as the Fischer–Griess monster, or the friendly giant) is the largest sporadic simple group; it has order :    : = 2463205976112133171923293141475971 : ≈ . The finite simple groups have been completely classified. Every such group belongs to one of 18 countably infinite families or is one of 26 sporadic groups that do not follow such a systematic pattern. The monster group contains 20 sporadic groups (including itself) as subquotients. Robert Griess, who proved the existence of the monster in 1982, has called those 20 groups the ''happy family'', and the remaining six exceptions '' pariahs''. It is difficult to give a good constructive definition of the monster because of its complexity. Martin Gardner wrote a popular account of the monster group in his June 1980 Mathematical Games column in ''Scientific American''. History The monster was predi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Supersingular Prime (moonshine Theory)
In the mathematical branch of moonshine theory, a supersingular prime is a prime number that divides the order of the Monster group M, which is the largest sporadic simple group. There are precisely fifteen supersingular prime numbers: the first eleven primes 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, and 31; as well as 41, 47, 59, and 71 . The non-supersingular primes are 37, 43, 53, 61, 67, and any prime number greater than or equal to 73. Supersingular primes are related to the notion of supersingular elliptic curves as follows. For a prime number p, the following are equivalent: # The modular curve X_0^+(p) = X_0(p)/w_p, where w_p is the Fricke involution of X_0(p), has genus zero. # Every supersingular elliptic curve in characteristic p can be defined over the prime subfield \mathbb_p. # The order of the Monster group is divisible by p. The equivalence is due to Andrew Ogg. More precisely, in 1975 Ogg showed that the primes satisfying the first condition ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sporadic Simple Group
In the mathematical classification of finite simple groups, there are a number of groups which do not fit into any infinite family. These are called the sporadic simple groups, or the sporadic finite groups, or just the sporadic groups. A simple group is a group ''G'' that does not have any normal subgroups except for the trivial group and ''G'' itself. The mentioned classification theorem states that the list of finite simple groups consists of 18 countably infinite families plus 26 exceptions that do not follow such a systematic pattern. These 26 exceptions are the sporadic groups. The Tits group is sometimes regarded as a sporadic group because it is not strictly a group of Lie type, in which case there would be 27 sporadic groups. The monster group, or ''friendly giant'', is the largest of the sporadic groups, and all but six of the other sporadic groups are subquotients of it. Names Five of the sporadic groups were discovered by Émile Mathieu in the 1860s and the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]