Invertible Sheaf
In mathematics, an invertible sheaf is a sheaf on a ringed space that has an inverse with respect to tensor product of sheaves of modules. It is the equivalent in algebraic geometry of the topological notion of a line bundle. Due to their interactions with Cartier divisors, they play a central role in the study of algebraic varieties. Definition Let (''X'', ''O''''X'') be a ringed space. Isomorphism classes of sheaves of ''O''''X''-modules form a monoid under the operation of tensor product of ''O''''X''-modules. The identity element for this operation is ''O''''X'' itself. Invertible sheaves are the invertible elements of this monoid. Specifically, if ''L'' is a sheaf of ''O''''X''-modules, then ''L'' is called invertible if it satisfies any of the following equivalent conditions: Stacks Project, tag 01CR * There exists a sheaf ''M'' such that L \otimes_ M \cong \mathcal_X. * The natural homomorphism L \otimes_ L^\vee \to \mathcal_X is an isomorphism, where L^\vee denote ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Projective Module
In mathematics, particularly in algebra, the class of projective modules enlarges the class of free modules (that is, modules with basis vectors) over a ring, keeping some of the main properties of free modules. Various equivalent characterizations of these modules appear below. Every free module is a projective module, but the converse fails to hold over some rings, such as Dedekind rings that are not principal ideal domains. However, every projective module is a free module if the ring is a principal ideal domain such as the integers, or a (multivariate) polynomial ring over a field (this is the Quillen–Suslin theorem). Projective modules were first introduced in 1956 in the influential book ''Homological Algebra'' by Henri Cartan and Samuel Eilenberg. Definitions Lifting property The usual category theoretical definition is in terms of the property of ''lifting'' that carries over from free to projective modules: a module ''P'' is projective if and only if fo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
First Chern Class
In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since become fundamental concepts in many branches of mathematics and physics, such as string theory, Chern–Simons theory, knot theory, and Gromov–Witten invariants. Chern classes were introduced by . Geometric approach Basic idea and motivation Chern classes are characteristic classes. They are topological invariants associated with vector bundles on a smooth manifold. The question of whether two ostensibly different vector bundles are the same can be quite hard to answer. The Chern classes provide a simple test: if the Chern classes of a pair of vector bundles do not agree, then the vector bundles are different. The converse, however, is not true. In topology, differential geometry, and algebraic geometry, it is often important to count how many linearly independent sections a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Curve
In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenization of a polynomial, homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation can be restricted to the affine algebraic plane curve of equation . These two operations are each inverse function, inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered. If the defining polynomial of a plane algebraic curve is irreducible polynomial, irreducible, then one has an ''irreducible plane algebraic curve''. Otherwise, the algebraic curve is the union of one or several irreducible curves, called its ''Irreduc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jacobian Variety
In mathematics, the Jacobian variety ''J''(''C'') of a non-singular algebraic curve ''C'' of genus ''g'' is the moduli space of degree 0 line bundles. It is the connected component of the identity in the Picard group of ''C'', hence an abelian variety. Introduction The Jacobian variety is named after Carl Gustav Jacobi, who proved the complete version of the Abel–Jacobi theorem, making the injectivity statement of Niels Abel into an isomorphism. It is a principally polarized abelian variety, of dimension ''g'', and hence, over the complex numbers, it is a complex torus. If ''p'' is a point of ''C'', then the curve ''C'' can be mapped to a subvariety of ''J'' with the given point ''p'' mapping to the identity of ''J'', and ''C'' generates ''J'' as a group. Construction for complex curves Over the complex numbers, the Jacobian variety can be realized as the quotient space ''V''/''L'', where ''V'' is the dual of the vector space of all global holomorphic differenti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Picard Functor
In mathematics, the Picard group of a ringed space ''X'', denoted by Pic(''X''), is the group of isomorphism classes of invertible sheaves (or line bundles) on ''X'', with the group operation being tensor product. This construction is a global version of the construction of the divisor class group, or ideal class group, and is much used in algebraic geometry and the theory of complex manifolds. Alternatively, the Picard group can be defined as the sheaf cohomology group :H^1 (X, \mathcal_X^).\, For integral schemes the Picard group is isomorphic to the class group of Cartier divisors. For complex manifolds the exponential sheaf sequence gives basic information on the Picard group. The name is in honour of Émile Picard's theories, in particular of divisors on algebraic surfaces. Examples * The Picard group of the spectrum of a Dedekind domain is its ''ideal class group''. * The invertible sheaves on projective space P''n''(''k'') for ''k'' a field, are the twisting sheaves \ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ideal Class Group
In mathematics, the ideal class group (or class group) of an algebraic number field K is the quotient group J_K/P_K where J_K is the group of fractional ideals of the ring of integers of K, and P_K is its subgroup of principal ideals. The class group is a measure of the extent to which unique factorization fails in the ring of integers of K. The order of the group, which is finite, is called the class number of K. The theory extends to Dedekind domains and their fields of fractions, for which the multiplicative properties are intimately tied to the structure of the class group. For example, the class group of a Dedekind domain is trivial if and only if the ring is a unique factorization domain. History and origin of the ideal class group Ideal class groups (or, rather, what were effectively ideal class groups) were studied some time before the idea of an ideal was formulated. These groups appeared in the theory of quadratic forms: in the case of binary integr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Abelian Group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after the Norwegian mathematician Niels Henrik Abel. The concept of an abelian group underlies many fundamental algebraic structures, such as fields, rings, vector spaces, and algebras. The theory of abelian groups is generally simpler than that of their non-abelian counterparts, and finite abelian groups are very well understood and fully classified. Definition An abelian group is a set A, together with an operation ・ , that combines any two elements a and b of A to form another element of A, denoted a \cdot b. The sym ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Number Fields
In mathematics, an algebraic number field (or simply number field) is an extension field K of the field (mathematics), field of rational numbers such that the field extension K / \mathbb has Degree of a field extension, finite degree (and hence is an algebraic extension, algebraic field extension). Thus K is a field that contains \mathbb and has finite Hamel dimension, dimension when considered as a vector space over The study of algebraic number fields, that is, of algebraic extensions of the field of rational numbers, is the central topic of algebraic number theory. This study reveals hidden structures behind the rational numbers, by using algebraic methods. Definition Prerequisites The notion of algebraic number field relies on the concept of a field (mathematics), field. A field consists of a set (mathematics), set of elements together with two operations, namely addition, and multiplication, and some distributivity assumptions. These operations make the field into an ab ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fractional Ideal
In mathematics, in particular commutative algebra, the concept of fractional ideal is introduced in the context of integral domains and is particularly fruitful in the study of Dedekind domains. In some sense, fractional ideals of an integral domain are like ideals where denominators are allowed. In contexts where fractional ideals and ordinary ring ideals are both under discussion, the latter are sometimes termed ''integral ideals'' for clarity. Definition and basic results Let R be an integral domain, and let K = \operatornameR be its field of fractions. A fractional ideal of R is an R- submodule I of K such that there exists a non-zero r \in R such that rI\subseteq R. The element r can be thought of as clearing out the denominators in I, hence the name fractional ideal. The principal fractional ideals are those R-submodules of K generated by a single nonzero element of K. A fractional ideal I is contained in R if and only if it is an (integral) ideal of R. A fractiona ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Equivalence Of Categories
In category theory, a branch of abstract mathematics, an equivalence of categories is a relation between two Category (mathematics), categories that establishes that these categories are "essentially the same". There are numerous examples of categorical equivalences from many areas of mathematics. Establishing an equivalence involves demonstrating strong similarities between the mathematical structures concerned. In some cases, these structures may appear to be unrelated at a superficial or intuitive level, making the notion fairly powerful: it creates the opportunity to "translate" theorems between different kinds of mathematical structures, knowing that the essential meaning of those theorems is preserved under the translation. If a category is equivalent to the dual (category theory), opposite (or dual) of another category then one speaks of a duality of categories, and says that the two categories are dually equivalent. An equivalence of categories consists of a functor betwe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |