Interpretability (machine Learning)
   HOME





Interpretability (machine Learning)
Explainable AI (XAI), or Interpretable AI, or Explainable Machine Learning (XML), is artificial intelligence (AI) in which humans can understand the decisions or predictions made by the AI. It contrasts with the " black box" concept in machine learning where even its designers cannot explain why an AI arrived at a specific decision. By refining the mental models of users of AI-powered systems and dismantling their misconceptions, XAI promises to help users perform more effectively. XAI may be an implementation of the social right to explanation. XAI is relevant even if there is no legal right or regulatory requirement. For example, XAI can improve the user experience of a product or service by helping end users trust that the AI is making good decisions. This way the aim of XAI is to explain what has been done, what is done right now, what will be done next and unveil the information the actions are based on. These characteristics make it possible (i) to confirm existing knowledge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Artificial Intelligence
Artificial intelligence (AI) is intelligence—perceiving, synthesizing, and inferring information—demonstrated by machines, as opposed to intelligence displayed by animals and humans. Example tasks in which this is done include speech recognition, computer vision, translation between (natural) languages, as well as other mappings of inputs. The ''Oxford English Dictionary'' of Oxford University Press defines artificial intelligence as: the theory and development of computer systems able to perform tasks that normally require human intelligence, such as visual perception, speech recognition, decision-making, and translation between languages. AI applications include advanced web search engines (e.g., Google), recommendation systems (used by YouTube, Amazon and Netflix), understanding human speech (such as Siri and Alexa), self-driving cars (e.g., Tesla), automated decision-making and competing at the highest level in strategic game systems (such as chess and Go). ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Automated Decision-making
Automated decision-making (ADM) involves the use of data, machines and algorithms to make decisions in a range of contexts, including public administration, business, health, education, law, employment, transport, media and entertainment, with varying degrees of human oversight or intervention. ADM involves large-scale data from a range of sources, such as databases, text, social media, sensors, images or speech, that is processed using various technologies including computer software, algorithms, machine learning, natural language processing, artificial intelligence, augmented intelligence and robotics. The increasing use of automated decision-making systems (ADMS) across a range of contexts presents many benefits and challenges to human society requiring consideration of the technical, legal, ethical, societal, educational, economic and health consequences. Overview There are different definitions of ADM based on the level of automation involved. Some definitions suggests ADM i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cluster Analysis
Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense) to each other than to those in other groups (clusters). It is a main task of exploratory data analysis, and a common technique for statistical data analysis, used in many fields, including pattern recognition, image analysis, information retrieval, bioinformatics, data compression, computer graphics and machine learning. Cluster analysis itself is not one specific algorithm, but the general task to be solved. It can be achieved by various algorithms that differ significantly in their understanding of what constitutes a cluster and how to efficiently find them. Popular notions of clusters include groups with small distances between cluster members, dense areas of the data space, intervals or particular statistical distributions. Clustering can therefore be formulated as a multi-objective optimization probl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neuron (software)
Neuron is a simulation environment for modeling individual and networks of neurons. It was primarily developed by Michael Hines, John W. Moore, and Ted Carnevale at Yale and Duke. Neuron models individual neurons via the use of sections that are automatically subdivided into individual compartments, instead of requiring the user to manually create compartments. The primary scripting language is hoc but a Python interface is also available. Programs can be written interactively in a shell, or loaded from a file. Neuron supports parallelization via the MPI protocol. Neuron is capable of handling diffusion-reaction models, and integrating diffusion functions into models of synapses and cellular networks. Parallelization is possible via internal multithreaded routines, for use on multi-core computers. The properties of the membrane channels of the neuron are simulated using compiled mechanisms written using the NMODL language or by compiled routines operating on internal data stru ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE